Cargando…

Diffusion tensor imaging‐based machine learning for IDH wild‐type glioblastoma stratification to reveal the biological underpinning of radiomic features

INTRODUCTION: This study addresses the lack of systematic investigation into the prognostic value of hand‐crafted radiomic features derived from diffusion tensor imaging (DTI) in isocitrate dehydrogenase (IDH) wild‐type glioblastoma (GBM), as well as the limited understanding of the biological inter...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zilong, Guan, Fangzhan, Duan, Wenchao, Guo, Yu, Pei, Dongling, Qiu, Yuning, Wang, Minkai, Xing, Aoqi, Liu, Zhongyi, Yu, Bin, Zheng, Hongwei, Liu, Xianzhi, Yan, Dongming, Ji, Yuchen, Cheng, Jingliang, Yan, Jing, Zhang, Zhenyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580329/
https://www.ncbi.nlm.nih.gov/pubmed/37222229
http://dx.doi.org/10.1111/cns.14263
_version_ 1785121919910019072
author Wang, Zilong
Guan, Fangzhan
Duan, Wenchao
Guo, Yu
Pei, Dongling
Qiu, Yuning
Wang, Minkai
Xing, Aoqi
Liu, Zhongyi
Yu, Bin
Zheng, Hongwei
Liu, Xianzhi
Yan, Dongming
Ji, Yuchen
Cheng, Jingliang
Yan, Jing
Zhang, Zhenyu
author_facet Wang, Zilong
Guan, Fangzhan
Duan, Wenchao
Guo, Yu
Pei, Dongling
Qiu, Yuning
Wang, Minkai
Xing, Aoqi
Liu, Zhongyi
Yu, Bin
Zheng, Hongwei
Liu, Xianzhi
Yan, Dongming
Ji, Yuchen
Cheng, Jingliang
Yan, Jing
Zhang, Zhenyu
author_sort Wang, Zilong
collection PubMed
description INTRODUCTION: This study addresses the lack of systematic investigation into the prognostic value of hand‐crafted radiomic features derived from diffusion tensor imaging (DTI) in isocitrate dehydrogenase (IDH) wild‐type glioblastoma (GBM), as well as the limited understanding of the biological interpretation of individual DTI radiomic features and metrics. AIMS: To develop and validate a DTI‐based radiomic model for predicting prognosis in patients with IDH wild‐type GBM and reveal the biological underpinning of individual DTI radiomic features and metrics. RESULTS: The DTI‐based radiomic signature was an independent prognostic factor (p < 0.001). Incorporating the radiomic signature into a clinical model resulted in a radiomic‐clinical nomogram that predicted survival better than either the radiomic model or clinical model alone, with a better calibration and classification accuracy. Four categories of pathways (synapse, proliferation, DNA damage response, and complex cellular functions) were significantly correlated with the DTI‐based radiomic features and DTI metrics. CONCLUSION: The prognostic radiomic features derived from DTI are driven by distinct pathways involved in synapse, proliferation, DNA damage response, and complex cellular functions of GBM.
format Online
Article
Text
id pubmed-10580329
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-105803292023-10-18 Diffusion tensor imaging‐based machine learning for IDH wild‐type glioblastoma stratification to reveal the biological underpinning of radiomic features Wang, Zilong Guan, Fangzhan Duan, Wenchao Guo, Yu Pei, Dongling Qiu, Yuning Wang, Minkai Xing, Aoqi Liu, Zhongyi Yu, Bin Zheng, Hongwei Liu, Xianzhi Yan, Dongming Ji, Yuchen Cheng, Jingliang Yan, Jing Zhang, Zhenyu CNS Neurosci Ther Original Articles INTRODUCTION: This study addresses the lack of systematic investigation into the prognostic value of hand‐crafted radiomic features derived from diffusion tensor imaging (DTI) in isocitrate dehydrogenase (IDH) wild‐type glioblastoma (GBM), as well as the limited understanding of the biological interpretation of individual DTI radiomic features and metrics. AIMS: To develop and validate a DTI‐based radiomic model for predicting prognosis in patients with IDH wild‐type GBM and reveal the biological underpinning of individual DTI radiomic features and metrics. RESULTS: The DTI‐based radiomic signature was an independent prognostic factor (p < 0.001). Incorporating the radiomic signature into a clinical model resulted in a radiomic‐clinical nomogram that predicted survival better than either the radiomic model or clinical model alone, with a better calibration and classification accuracy. Four categories of pathways (synapse, proliferation, DNA damage response, and complex cellular functions) were significantly correlated with the DTI‐based radiomic features and DTI metrics. CONCLUSION: The prognostic radiomic features derived from DTI are driven by distinct pathways involved in synapse, proliferation, DNA damage response, and complex cellular functions of GBM. John Wiley and Sons Inc. 2023-05-24 /pmc/articles/PMC10580329/ /pubmed/37222229 http://dx.doi.org/10.1111/cns.14263 Text en © 2023 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Wang, Zilong
Guan, Fangzhan
Duan, Wenchao
Guo, Yu
Pei, Dongling
Qiu, Yuning
Wang, Minkai
Xing, Aoqi
Liu, Zhongyi
Yu, Bin
Zheng, Hongwei
Liu, Xianzhi
Yan, Dongming
Ji, Yuchen
Cheng, Jingliang
Yan, Jing
Zhang, Zhenyu
Diffusion tensor imaging‐based machine learning for IDH wild‐type glioblastoma stratification to reveal the biological underpinning of radiomic features
title Diffusion tensor imaging‐based machine learning for IDH wild‐type glioblastoma stratification to reveal the biological underpinning of radiomic features
title_full Diffusion tensor imaging‐based machine learning for IDH wild‐type glioblastoma stratification to reveal the biological underpinning of radiomic features
title_fullStr Diffusion tensor imaging‐based machine learning for IDH wild‐type glioblastoma stratification to reveal the biological underpinning of radiomic features
title_full_unstemmed Diffusion tensor imaging‐based machine learning for IDH wild‐type glioblastoma stratification to reveal the biological underpinning of radiomic features
title_short Diffusion tensor imaging‐based machine learning for IDH wild‐type glioblastoma stratification to reveal the biological underpinning of radiomic features
title_sort diffusion tensor imaging‐based machine learning for idh wild‐type glioblastoma stratification to reveal the biological underpinning of radiomic features
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580329/
https://www.ncbi.nlm.nih.gov/pubmed/37222229
http://dx.doi.org/10.1111/cns.14263
work_keys_str_mv AT wangzilong diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures
AT guanfangzhan diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures
AT duanwenchao diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures
AT guoyu diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures
AT peidongling diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures
AT qiuyuning diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures
AT wangminkai diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures
AT xingaoqi diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures
AT liuzhongyi diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures
AT yubin diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures
AT zhenghongwei diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures
AT liuxianzhi diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures
AT yandongming diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures
AT jiyuchen diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures
AT chengjingliang diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures
AT yanjing diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures
AT zhangzhenyu diffusiontensorimagingbasedmachinelearningforidhwildtypeglioblastomastratificationtorevealthebiologicalunderpinningofradiomicfeatures