Cargando…
Diffusion tensor imaging‐based machine learning for IDH wild‐type glioblastoma stratification to reveal the biological underpinning of radiomic features
INTRODUCTION: This study addresses the lack of systematic investigation into the prognostic value of hand‐crafted radiomic features derived from diffusion tensor imaging (DTI) in isocitrate dehydrogenase (IDH) wild‐type glioblastoma (GBM), as well as the limited understanding of the biological inter...
Autores principales: | Wang, Zilong, Guan, Fangzhan, Duan, Wenchao, Guo, Yu, Pei, Dongling, Qiu, Yuning, Wang, Minkai, Xing, Aoqi, Liu, Zhongyi, Yu, Bin, Zheng, Hongwei, Liu, Xianzhi, Yan, Dongming, Ji, Yuchen, Cheng, Jingliang, Yan, Jing, Zhang, Zhenyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580329/ https://www.ncbi.nlm.nih.gov/pubmed/37222229 http://dx.doi.org/10.1111/cns.14263 |
Ejemplares similares
-
Biological underpinnings of radiomic magnetic resonance imaging phenotypes for risk stratification in IDH wild-type glioblastoma
por: Guan, Fangzhan, et al.
Publicado: (2023) -
Radiomic features from multiparametric magnetic resonance imaging predict molecular subgroups of pediatric low-grade gliomas
por: Liu, Zhen, et al.
Publicado: (2023) -
Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images
por: Wang, Weiwei, et al.
Publicado: (2023) -
Deep learning features from diffusion tensor imaging improve glioma stratification and identify risk groups with distinct molecular pathway activities
por: Yan, Jing, et al.
Publicado: (2021) -
Radiomics and Qualitative Features From Multiparametric MRI Predict Molecular Subtypes in Patients With Lower-Grade Glioma
por: Sun, Chen, et al.
Publicado: (2022)