Cargando…
simAIRR: simulation of adaptive immune repertoires with realistic receptor sequence sharing for benchmarking of immune state prediction methods
BACKGROUND: Machine learning (ML) has gained significant attention for classifying immune states in adaptive immune receptor repertoires (AIRRs) to support the advancement of immunodiagnostics and therapeutics. Simulated data are crucial for the rigorous benchmarking of AIRR-ML methods. Existing app...
Autores principales: | Kanduri, Chakravarthi, Scheffer, Lonneke, Pavlović, Milena, Rand, Knut Dagestad, Chernigovskaya, Maria, Pirvandy, Oz, Yaari, Gur, Greiff, Victor, Sandve, Geir K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580376/ https://www.ncbi.nlm.nih.gov/pubmed/37848619 http://dx.doi.org/10.1093/gigascience/giad074 |
Ejemplares similares
-
Profiling the baseline performance and limits of machine learning models for adaptive immune receptor repertoire classification
por: Kanduri, Chakravarthi, et al.
Publicado: (2022) -
CompAIRR: ultra-fast comparison of adaptive immune receptor repertoires by exact and approximate sequence matching
por: Rognes, Torbjørn, et al.
Publicado: (2022) -
Ten simple rules for quick and dirty scientific programming
por: Balaban, Gabriel, et al.
Publicado: (2021) -
immuneSIM: tunable multi-feature simulation of B- and T-cell receptor repertoires for immunoinformatics benchmarking
por: Weber, Cédric R, et al.
Publicado: (2020) -
AIRR Community Standardized Representations for Annotated Immune Repertoires
por: Vander Heiden, Jason Anthony, et al.
Publicado: (2018)