Cargando…
Alteration in gut mycobiota of patients with polycystic ovary syndrome
Polycystic ovary syndrome (PCOS) is a serious disease characterized by high androgen, insulin resistance (IR), hyperglycemia, and obesity, leading to infertility. The gut mycobiota has been reported to evolve in metabolic diseases including obesity, hyperglycemia, and fatty liver. However, little is...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580825/ https://www.ncbi.nlm.nih.gov/pubmed/37702484 http://dx.doi.org/10.1128/spectrum.02360-23 |
Sumario: | Polycystic ovary syndrome (PCOS) is a serious disease characterized by high androgen, insulin resistance (IR), hyperglycemia, and obesity, leading to infertility. The gut mycobiota has been reported to evolve in metabolic diseases including obesity, hyperglycemia, and fatty liver. However, little is known about the gut mycobiota and PCOS. In the current study, we recruited 17 PCOS patients and 17 age-matched healthy controls for community structure and functional analysis of the gut mycobiota. The results showed that PCOS patients have reduced diversity and richness of the gut microbiota compared with healthy controls. β-Diversity analysis showed that the community structure of the gut microbiota of patients with PCOS was significantly different from healthy controls. At the phylum level, PCOS patients have reduced Basidiomycota and increased Ascomycota compared with healthy controls. At the family level, the higher relative abundance of Saccharomycetaceae and lower Trichosporonaceae and Ascomycota_unclassified were detected in PCOS patients than in healthy controls. At the genus level, different microbial compositions were also observed between PCOS patients and healthy controls. In addition, PICRUSt2 showed that patients with PCOS have different microbial functions in the gut compared with healthy controls. LEfSe indicated that Saccharomyces and Lentinula were enriched in the fecal samples of PCOS patients, while Aspergillus was depleted compared with healthy controls. Our finding indicates that PCOS patients have different community structures and functions of the gut mycobiota, which provides new insight into PCOS pathogenesis and intervention. IMPORTANCE: It was found that intestinal fungi as well as serum metabolites in PCOS patients were significantly different from those in healthy subjects. However, no studies have been done to show exactly which fungus interacts with which bacteria in humans or which fungus acts alone. As fungal research progresses, it will be possible to fill this gap. |
---|