Cargando…
In vitro activity of new combinations of β-lactam and β-lactamase inhibitors against the Mycobacterium tuberculosis complex
As meropenem-clavulanic acid is recommended for the treatment of drug-resistant tuberculosis, the repurposing of new carbapenem combinations may provide new treatment options, including oral alternatives. Therefore, we studied the in vitro activities of meropenem-vaborbactam, meropenem-clavulanic ac...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580993/ https://www.ncbi.nlm.nih.gov/pubmed/37737628 http://dx.doi.org/10.1128/spectrum.01781-23 |
Sumario: | As meropenem-clavulanic acid is recommended for the treatment of drug-resistant tuberculosis, the repurposing of new carbapenem combinations may provide new treatment options, including oral alternatives. Therefore, we studied the in vitro activities of meropenem-vaborbactam, meropenem-clavulanic acid, and tebipenem-clavulanic acid. One hundred nine Mycobacterium tuberculosis complex (MTBC) clinical isolates were tested, of which 69 were pan-susceptible and the remaining pyrazinamide- or multidrug-resistant. Broth microdilution MICs were determined using the EUCAST reference method. Meropenem and tebipenem were tested individually and in combination with vaborbactam 8 mg/L and clavulanic-acid 2 and 4 mg/L, respectively. Whole-genome sequencing was performed to explore resistance mechanisms. Clavulanic acid lowered the modal tebipenem MIC approximately 16-fold (from 16 to 1 mg/L). The modal meropenem MIC was reduced twofold by vaborbactam compared with an approximately eightfold decrease by clavulanic acid. The only previously described high-confidence carbapenem resistance mutation, crfA T62A, was shared by a subgroup of lineage 4.3.4.1 isolates and did not correlate with elevated MICs. The presence of a β-lactamase inhibitor reduced the MTBC MICs of tebipenem and meropenem. The resulting MIC distribution was lowest for the orally available drugs tebipenem-clavulanic acid. Whether this in vitro activity translates to similar or greater clinical efficacy of tebipenem-clavulanic acid compared with the currently WHO-endorsed meropenem-clavulanic acid requires clinical studies. IMPORTANCE: Repurposing of already approved antibiotics, such as β-lactams in combination with β-lactamase inhibitors, may provide new treatment alternatives for drug-resistant tuberculosis. Meropenem-clavulanic acid was more active in vitro compared to meropenem-vaborbactam. Notably, tebipenem-clavulanic acid showed even better activity, raising the potential of an all-oral treatment option. Clinical data are needed to investigate whether the better in vitro activity of tebipenem-clavulanic acid correlates with greater clinical efficacy compared with the currently WHO-endorsed meropenem-clavulanic acid. |
---|