Cargando…
Plant parentage influences the type of timber use by traditional peoples of the Brazilian Caatinga
Local populations select different plants to meet their demands, so that morphologically similar species can be more used for a given use. Herein, we seek to understand whether plant species that are phylogenetically closer together are used more similarly than distant species in the phylogeny. Ethn...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581497/ https://www.ncbi.nlm.nih.gov/pubmed/37847702 http://dx.doi.org/10.1371/journal.pone.0286434 |
Sumario: | Local populations select different plants to meet their demands, so that morphologically similar species can be more used for a given use. Herein, we seek to understand whether plant species that are phylogenetically closer together are used more similarly than distant species in the phylogeny. Ethnobotanical data were collected in five rural communities in a semi-arid region of Brazil. A total of 120 local experts were selected and interviewed using semi-structured questionnaires. The people’s knowledge of plants was organized into usage subcategories. We estimated the redundancy values for the mentioned species, and we compiled data from the literature on the wood density values of the cited species. We constructed our phylogenetic hypothesis of useful plants and used comparative phylogenetic methods to estimate the signal. Our results showed a strong phylogenetic grouping for both tool handle and craft uses. We observed a moderate phylogenetic grouping in which related cited plants exhibit similar redundancy and a weak grouping in which cited plants present similar wood density values. Our results revealed the importance of using phylogeny for useful plants. We conclude the phylogenetic proximity of useful plants and the lower redundancy for some species in our study may suggest greater use pressure, given that few species fulfill the same function. |
---|