Cargando…
Inference of Coalescence Times and Variant Ages Using Convolutional Neural Networks
Accurate inference of the time to the most recent common ancestor (TMRCA) between pairs of individuals and of the age of genomic variants is key in several population genetic analyses. We developed a likelihood-free approach, called CoalNN, which uses a convolutional neural network to predict pairwi...
Autores principales: | Nait Saada, Juba, Tsangalidou, Zoi, Stricker, Miriam, Palamara, Pier Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581698/ https://www.ncbi.nlm.nih.gov/pubmed/37738175 http://dx.doi.org/10.1093/molbev/msad211 |
Ejemplares similares
-
Haplotype-based inference of recent effective population size in modern and ancient DNA samples
por: Fournier, Romain, et al.
Publicado: (2023) -
Ultrafast genome-wide inference of pairwise coalescence times
por: Schweiger, Regev, et al.
Publicado: (2023) -
Identity-by-descent detection across 487,409 British samples reveals fine scale population structure and ultra-rare variant associations
por: Nait Saada, Juba, et al.
Publicado: (2020) -
High-throughput inference of pairwise coalescence times identifies signals of selection and enriched disease heritability
por: Palamara, Pier Francesco, et al.
Publicado: (2018) -
Variational inference using approximate likelihood under the coalescent with recombination
por: Liu, Xinhao, et al.
Publicado: (2021)