Cargando…

Cyst fluid glycoproteins accurately distinguishing malignancies of pancreatic cystic neoplasm

Pancreatic cystic neoplasms (PCNs) are recognized as precursor lesions of pancreatic cancer, with a marked increase in prevalence. Early detection of malignant PCNs is crucial for improving prognosis; however, current diagnostic methods are insufficient for accurately identifying malignant PCNs. Her...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Ming, Hu, Ya, Zhang, Zejian, Chen, Tianqi, Dai, Menghua, Xu, Qiang, Guo, Junchao, Zhang, Taiping, Liao, Quan, Yu, Jun, Zhao, Yupei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582020/
https://www.ncbi.nlm.nih.gov/pubmed/37848412
http://dx.doi.org/10.1038/s41392-023-01645-8
Descripción
Sumario:Pancreatic cystic neoplasms (PCNs) are recognized as precursor lesions of pancreatic cancer, with a marked increase in prevalence. Early detection of malignant PCNs is crucial for improving prognosis; however, current diagnostic methods are insufficient for accurately identifying malignant PCNs. Here, we utilized mass spectrometry (MS)-based glycosite- and glycoform-specific glycoproteomics, combined with proteomics, to explore potential cyst fluid diagnostic biomarkers for PCN. The glycoproteomic and proteomic landscape of pancreatic cyst fluid samples from PCN patients was comprehensively investigated, and its characteristics during the malignant transformation of PCN were analyzed. Under the criteria of screening specific cyst fluid biomarkers for the diagnosis of PCN, a group of cyst fluid glycoprotein biomarkers was identified. Through parallel reaction monitoring (PRM)-based targeted glycoproteomic analysis, we validated these chosen glycoprotein biomarkers in a second cohort, ultimately confirming N-glycosylated PHKB (Asn-935, H5N2F0S0; Asn-935, H4N4F0S0; Asn-935, H5N4F0S0), CEACAM5 (Asn-197, H5N4F0S0) and ATP6V0A4 (Asn-367, H6N4F0S0) as promising diagnostic biomarkers for distinguishing malignant PCNs. These glycoprotein biomarkers exhibited robust performance, with an area under the curve ranging from 0.771 to 0.948. In conclusion, we successfully established and conducted MS-based glycoproteomic analysis to identify novel cyst fluid glycoprotein biomarkers for PCN. These findings hold significant clinical implications, providing valuable insights for PCN decision-making, and potentially offering therapeutic targets for PCN treatment.