Cargando…
Material-agnostic machine learning approach enables high relative density in powder bed fusion products
This study introduces a method that is applicable across various powder materials to predict process conditions that yield a product with a relative density greater than 98% by laser powder bed fusion. We develop an XGBoost model using a dataset comprising material properties of powder and process c...
Autores principales: | Wang, Jaemin, Jeong, Sang Guk, Kim, Eun Seong, Kim, Hyoung Seop, Lee, Byeong-Joo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582079/ https://www.ncbi.nlm.nih.gov/pubmed/37848436 http://dx.doi.org/10.1038/s41467-023-42319-x |
Ejemplares similares
-
Powder Surface Roughness as Proxy for Bed Density in Powder Bed Fusion of Polymers
por: Sillani, Francesco, et al.
Publicado: (2021) -
Microstructural Control Strategy Based on Optimizing Laser Powder Bed Fusion for Different Hastelloy X Powder Size
por: Jang, Jee-Eun, et al.
Publicado: (2022) -
Laser Powder Bed Fusion of Dissimilar Metal Materials: A Review
por: Guan, Jieren, et al.
Publicado: (2023) -
Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density
por: Rausch, Alexander M., et al.
Publicado: (2017) -
Laser Powder Bed Fusion of Metal Coated Copper Powders
por: Lindström, Viktor, et al.
Publicado: (2020)