Cargando…
Extracting prime protein targets as possible drug candidates: machine learning evaluation
Extracting “high ranking” or “prime protein targets” (PPTs) as potent MRSA drug candidates from a given set of ligands is a key challenge in efficient molecular docking. This study combines protein-versus-ligand matching molecular docking (MD) data extracted from 10 independent molecular docking (MD...
Autores principales: | Chattopadhyay, Subhagata, Do, Nhat Phuong, Flower, Darren R., Chattopadhyay, Amit K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582137/ https://www.ncbi.nlm.nih.gov/pubmed/37608081 http://dx.doi.org/10.1007/s11517-023-02893-0 |
Ejemplares similares
-
Towards Effective Consensus Scoring in Structure-Based Virtual Screening
por: Nhat Phuong, Do, et al.
Publicado: (2022) -
A statistical physics perspective on alignment-independent protein sequence comparison
por: Chattopadhyay, Amit K., et al.
Publicado: (2015) -
CHD Risk Minimization through Lifestyle Control: Machine Learning Gateway
por: He, Xi, et al.
Publicado: (2020) -
DrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets
por: Raies, Arwa, et al.
Publicado: (2022) -
Machine learning identifies candidates for drug repurposing in Alzheimer’s disease
por: Rodriguez, Steve, et al.
Publicado: (2021)