Cargando…

An effective AI model for automatically detecting arteriovenous fistula stenosis

In this study, a novel artificial intelligence (AI) model is proposed to detect stenosis in arteriovenous fistulas (AVFs) using inexpensive and non-invasive audio recordings. The proposed model is a combination of two new input features based on short-time Fourier transform (STFT) and sample entropy...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Wheyming Tina, Chen, Chang Chiang, Yu, Zi-Wei, Huang, Hao-Chuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582155/
https://www.ncbi.nlm.nih.gov/pubmed/37848465
http://dx.doi.org/10.1038/s41598-023-35444-6
Descripción
Sumario:In this study, a novel artificial intelligence (AI) model is proposed to detect stenosis in arteriovenous fistulas (AVFs) using inexpensive and non-invasive audio recordings. The proposed model is a combination of two new input features based on short-time Fourier transform (STFT) and sample entropy, as well as two associated classification models (ResNet50 and ANN). The model’s hyper-parameters were optimized through the use of the design of the experiment (DOE). The proposed AI model demonstrates high performance with all essential metrics, including sensitivity, specificity, accuracy, precision, and F1-score, exceeding 0.90 at detecting stenosis greater than 50%. These promising results suggest that our approach can lead to new insights and knowledge in this field. Moreover, the robust performance of our model, combined with the affordability of the audio recording device, makes it a valuable tool for detecting AVF stenosis in home-care settings.