Cargando…

The impact of different polishing systems on yttria‐stabilized tetragonal zirconia polycrystalline crowns in relation to heat generation

OBJECTIVES: To investigate the heat generation on yttria‐stabilized tetragonal zirconia polycrystalline (Y‐TZP) crowns during polishing with coarse and fine polishing systems at various speeds. MATERIALS AND METHODS: Two polishers (coarse and fine) at three polishing speeds were investigated. Two si...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiaoyun, Aarts, John M., Ma, Sunyoung, Choi, Joanne Jung Eun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582218/
https://www.ncbi.nlm.nih.gov/pubmed/37608597
http://dx.doi.org/10.1002/cre2.778
Descripción
Sumario:OBJECTIVES: To investigate the heat generation on yttria‐stabilized tetragonal zirconia polycrystalline (Y‐TZP) crowns during polishing with coarse and fine polishing systems at various speeds. MATERIALS AND METHODS: Two polishers (coarse and fine) at three polishing speeds were investigated. Two simulation models of the first mandibular molars were prepared for full coverage Y‐TZP restorations with different reduction dimensions. Preheated water was pumped into the abutment chamber, to simulate the intrapulpal temperature and blood flow. Twelve Y‐TZP crowns (3M™ Lava™ Esthetic) were milled for each prepared tooth abutment and each cusp (n = 10) was individually ground for 30 s and polished for 2 min. Thermocouple wire was secured to the intaglio surface of the crown and linked to a data logger for recording temperature changes. Selected scanning electron microscopy (SEM) images of the treated surfaces and polishers were analyzed. The data was statistically analyzed using Prism 9. RESULTS: The highest temperature rise was observed in the 20,000 RPM polishing speed groups for both coarse and fine polishing, and higher than the threshold value of 5.5°C for pulp damage. The Kruskal–Wallis test, revealed statistically significant differences (p < .0001) in heat generation between low (10,000 RPM) and high (20,000 RPM) polishing speeds. CONCLUSIONS: High‐speed polishing at 20,000 RPM generated the most heat over the threshold of 5.5°C, which would threaten the dental pulp. The results suggest that a cautionary approach should be taken to high‐speed intraoral polishing. CLINICAL RELEVANCE: Dental clinicians should be aware of the choice of polishing systems and speeds to avoid pulp damage from intraoral polishing of Y‐TZP restorations.