Cargando…
Synergistic effect of Fe and BiOCl in enhancing electrocatalytic performance for oxygen evolution reaction
Fe was added to bismuth oxychloride (BiOCl) to improve its oxygen evolution reaction(OER) catalytic activity. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), EDS, and X-ray photoelectron spectroscopy (XPS) were used to analyze the material that was produced. Many elect...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582364/ https://www.ncbi.nlm.nih.gov/pubmed/37860556 http://dx.doi.org/10.1016/j.heliyon.2023.e20811 |
Sumario: | Fe was added to bismuth oxychloride (BiOCl) to improve its oxygen evolution reaction(OER) catalytic activity. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), EDS, and X-ray photoelectron spectroscopy (XPS) were used to analyze the material that was produced. Many electrochemical techniques, including linear sweep voltammetry (LSV), Mott Schottky, and electrochemical impedance spectroscopy (EIS), were used to conduct the electrochemical studies of Fe doped BiOCl. Fe doped BiOCl exhibited enhanced catalytic performance compared to pristine BiOCl. The best performance was observed for 0.75 M Fe doped BiOCl sample. It recorded lowest overpotential of 354 mV @ 10 mA cm(−2) and Tafel slope of 167 mV dec(−1). The synergistic effect of Fe doping from structural, chemical and catalytic perspective has been analyzed and presented. |
---|