Cargando…

A Stress Self‐Adaptive Silicon/Carbon “Ordered Structures” to Suppress the Electro‐Chemo‐Mechanical Failure: Piezo‐Electrochemistry and Piezo‐Ionic Dynamics

Construction of ordered structures that respond rapidly to environmental stimuli has fascinating possibilities for utilization in energy storage, wearable electronics, and biotechnology. Silicon/carbon (Si/C) anodes with extremely high energy densities have sparked widespread interest for lithium‐io...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Hongshun, Liang, Kang, Wang, Shijie, Ding, Zhengping, Huang, Xiaobing, Chen, Wenkai, Ren, Yurong, Li, Jianbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582439/
https://www.ncbi.nlm.nih.gov/pubmed/37607121
http://dx.doi.org/10.1002/advs.202303696
_version_ 1785122331335589888
author Zhao, Hongshun
Liang, Kang
Wang, Shijie
Ding, Zhengping
Huang, Xiaobing
Chen, Wenkai
Ren, Yurong
Li, Jianbin
author_facet Zhao, Hongshun
Liang, Kang
Wang, Shijie
Ding, Zhengping
Huang, Xiaobing
Chen, Wenkai
Ren, Yurong
Li, Jianbin
author_sort Zhao, Hongshun
collection PubMed
description Construction of ordered structures that respond rapidly to environmental stimuli has fascinating possibilities for utilization in energy storage, wearable electronics, and biotechnology. Silicon/carbon (Si/C) anodes with extremely high energy densities have sparked widespread interest for lithium‐ion batteries (LIBs), while their implementation is constrained via mechanical structure deterioration, continued growth of the solid electrolyte interface (SEI), and cycling instability. In this study, a piezoelectric Bi(0.5)Na(0.5)TiO(3) (BNT) layer is facilely deposited onto Si/C@CNTs anodes to drive piezoelectric fields upon large volume expansion of Si/C@CNTs electrode materials, resulting in the modulation of interfacial Li(+) kinetics during cycling and providing an electrochemical reaction with a mechanically robust and chemically stable substrate. In‐depth investigations into theoretical computation, multi‐scale in/ex situ characterizations, and finite element analysis reveal that the improved structural stability, suppressed volume variations, and controlled ion transportation are responsible for the improvement mechanism of BNT decorating. These discoveries provide insight into the surface coupling technique between mechanical and electric fields to control the interfacial Li(+) kinetics behavior and improve structural stability for alloy‐based anodes, which will also spark a great deal attention from researchers and technologists in multifunctional surface engineering for electrochemical systems.
format Online
Article
Text
id pubmed-10582439
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-105824392023-10-19 A Stress Self‐Adaptive Silicon/Carbon “Ordered Structures” to Suppress the Electro‐Chemo‐Mechanical Failure: Piezo‐Electrochemistry and Piezo‐Ionic Dynamics Zhao, Hongshun Liang, Kang Wang, Shijie Ding, Zhengping Huang, Xiaobing Chen, Wenkai Ren, Yurong Li, Jianbin Adv Sci (Weinh) Research Articles Construction of ordered structures that respond rapidly to environmental stimuli has fascinating possibilities for utilization in energy storage, wearable electronics, and biotechnology. Silicon/carbon (Si/C) anodes with extremely high energy densities have sparked widespread interest for lithium‐ion batteries (LIBs), while their implementation is constrained via mechanical structure deterioration, continued growth of the solid electrolyte interface (SEI), and cycling instability. In this study, a piezoelectric Bi(0.5)Na(0.5)TiO(3) (BNT) layer is facilely deposited onto Si/C@CNTs anodes to drive piezoelectric fields upon large volume expansion of Si/C@CNTs electrode materials, resulting in the modulation of interfacial Li(+) kinetics during cycling and providing an electrochemical reaction with a mechanically robust and chemically stable substrate. In‐depth investigations into theoretical computation, multi‐scale in/ex situ characterizations, and finite element analysis reveal that the improved structural stability, suppressed volume variations, and controlled ion transportation are responsible for the improvement mechanism of BNT decorating. These discoveries provide insight into the surface coupling technique between mechanical and electric fields to control the interfacial Li(+) kinetics behavior and improve structural stability for alloy‐based anodes, which will also spark a great deal attention from researchers and technologists in multifunctional surface engineering for electrochemical systems. John Wiley and Sons Inc. 2023-08-21 /pmc/articles/PMC10582439/ /pubmed/37607121 http://dx.doi.org/10.1002/advs.202303696 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Zhao, Hongshun
Liang, Kang
Wang, Shijie
Ding, Zhengping
Huang, Xiaobing
Chen, Wenkai
Ren, Yurong
Li, Jianbin
A Stress Self‐Adaptive Silicon/Carbon “Ordered Structures” to Suppress the Electro‐Chemo‐Mechanical Failure: Piezo‐Electrochemistry and Piezo‐Ionic Dynamics
title A Stress Self‐Adaptive Silicon/Carbon “Ordered Structures” to Suppress the Electro‐Chemo‐Mechanical Failure: Piezo‐Electrochemistry and Piezo‐Ionic Dynamics
title_full A Stress Self‐Adaptive Silicon/Carbon “Ordered Structures” to Suppress the Electro‐Chemo‐Mechanical Failure: Piezo‐Electrochemistry and Piezo‐Ionic Dynamics
title_fullStr A Stress Self‐Adaptive Silicon/Carbon “Ordered Structures” to Suppress the Electro‐Chemo‐Mechanical Failure: Piezo‐Electrochemistry and Piezo‐Ionic Dynamics
title_full_unstemmed A Stress Self‐Adaptive Silicon/Carbon “Ordered Structures” to Suppress the Electro‐Chemo‐Mechanical Failure: Piezo‐Electrochemistry and Piezo‐Ionic Dynamics
title_short A Stress Self‐Adaptive Silicon/Carbon “Ordered Structures” to Suppress the Electro‐Chemo‐Mechanical Failure: Piezo‐Electrochemistry and Piezo‐Ionic Dynamics
title_sort stress self‐adaptive silicon/carbon “ordered structures” to suppress the electro‐chemo‐mechanical failure: piezo‐electrochemistry and piezo‐ionic dynamics
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582439/
https://www.ncbi.nlm.nih.gov/pubmed/37607121
http://dx.doi.org/10.1002/advs.202303696
work_keys_str_mv AT zhaohongshun astressselfadaptivesiliconcarbonorderedstructurestosuppresstheelectrochemomechanicalfailurepiezoelectrochemistryandpiezoionicdynamics
AT liangkang astressselfadaptivesiliconcarbonorderedstructurestosuppresstheelectrochemomechanicalfailurepiezoelectrochemistryandpiezoionicdynamics
AT wangshijie astressselfadaptivesiliconcarbonorderedstructurestosuppresstheelectrochemomechanicalfailurepiezoelectrochemistryandpiezoionicdynamics
AT dingzhengping astressselfadaptivesiliconcarbonorderedstructurestosuppresstheelectrochemomechanicalfailurepiezoelectrochemistryandpiezoionicdynamics
AT huangxiaobing astressselfadaptivesiliconcarbonorderedstructurestosuppresstheelectrochemomechanicalfailurepiezoelectrochemistryandpiezoionicdynamics
AT chenwenkai astressselfadaptivesiliconcarbonorderedstructurestosuppresstheelectrochemomechanicalfailurepiezoelectrochemistryandpiezoionicdynamics
AT renyurong astressselfadaptivesiliconcarbonorderedstructurestosuppresstheelectrochemomechanicalfailurepiezoelectrochemistryandpiezoionicdynamics
AT lijianbin astressselfadaptivesiliconcarbonorderedstructurestosuppresstheelectrochemomechanicalfailurepiezoelectrochemistryandpiezoionicdynamics
AT zhaohongshun stressselfadaptivesiliconcarbonorderedstructurestosuppresstheelectrochemomechanicalfailurepiezoelectrochemistryandpiezoionicdynamics
AT liangkang stressselfadaptivesiliconcarbonorderedstructurestosuppresstheelectrochemomechanicalfailurepiezoelectrochemistryandpiezoionicdynamics
AT wangshijie stressselfadaptivesiliconcarbonorderedstructurestosuppresstheelectrochemomechanicalfailurepiezoelectrochemistryandpiezoionicdynamics
AT dingzhengping stressselfadaptivesiliconcarbonorderedstructurestosuppresstheelectrochemomechanicalfailurepiezoelectrochemistryandpiezoionicdynamics
AT huangxiaobing stressselfadaptivesiliconcarbonorderedstructurestosuppresstheelectrochemomechanicalfailurepiezoelectrochemistryandpiezoionicdynamics
AT chenwenkai stressselfadaptivesiliconcarbonorderedstructurestosuppresstheelectrochemomechanicalfailurepiezoelectrochemistryandpiezoionicdynamics
AT renyurong stressselfadaptivesiliconcarbonorderedstructurestosuppresstheelectrochemomechanicalfailurepiezoelectrochemistryandpiezoionicdynamics
AT lijianbin stressselfadaptivesiliconcarbonorderedstructurestosuppresstheelectrochemomechanicalfailurepiezoelectrochemistryandpiezoionicdynamics