Cargando…
MGGAN: A multi-generator generative adversarial network for breast cancer immunohistochemical image generation
The immunohistochemical technique (IHC) is widely used for evaluating diagnostic markers, but it can be expensive to obtain IHC-stained section. Translating the cheap and easily available hematoxylin and eosin (HE) images into IHC images provides a solution to this challenge. In this paper, we propo...
Autores principales: | Liu, Liangliang, Liu, Zhihong, Chang, Jing, Qiao, Hongbo, Sun, Tong, Shang, Junping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582479/ https://www.ncbi.nlm.nih.gov/pubmed/37860562 http://dx.doi.org/10.1016/j.heliyon.2023.e20614 |
Ejemplares similares
-
Generative adversarial networks for image generation
por: Mao, Xudong, et al.
Publicado: (2021) -
Beautification of images by generative adversarial networks
por: Music, Amar, et al.
Publicado: (2023) -
Generating mobility networks with generative adversarial networks
por: Mauro, Giovanni, et al.
Publicado: (2022) -
Conditional Progressive Generative Adversarial Network for satellite image generation
por: Cardoso, Renato, et al.
Publicado: (2022) -
Hands-on generative adversarial networks with Keras: your guide to implementing next-generation generative adversarial networks
por: Valle, Rafael
Publicado: (2019)