Cargando…
A fast Fourier convolutional deep neural network for accurate and explainable discrimination of wheat yellow rust and nitrogen deficiency from Sentinel-2 time series data
INTRODUCTION: Accurate and timely detection of plant stress is essential for yield protection, allowing better-targeted intervention strategies. Recent advances in remote sensing and deep learning have shown great potential for rapid non-invasive detection of plant stress in a fully automated and re...
Autores principales: | Shi, Yue, Han, Liangxiu, González-Moreno, Pablo, Dancey, Darren, Huang, Wenjiang, Zhang, Zhiqiang, Liu, Yuanyuan, Huang, Mengning, Miao, Hong, Dai, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582577/ https://www.ncbi.nlm.nih.gov/pubmed/37860254 http://dx.doi.org/10.3389/fpls.2023.1250844 |
Ejemplares similares
-
New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery
por: Zheng, Qiong, et al.
Publicado: (2018) -
Identification of Wheat Yellow Rust Using Optimal Three-Band Spectral Indices in Different Growth Stages
por: Zheng, Qiong, et al.
Publicado: (2018) -
To What Extent Does Yellow Rust Infestation Affect Remotely Sensed Nitrogen Status?
por: Carlier, Alexis, et al.
Publicado: (2023) -
RustOnt: An Ontology to Explain Weather Favorable Conditions of the Coffee Rust
por: Suarez, Carlos, et al.
Publicado: (2022) -
Fourier transforms: and convolutions for the experimentalist
por: Jennison, RC
Publicado: (1961)