Cargando…
In vivo synergistic tumor therapies based on copper sulfide photothermal therapeutic nanoplatforms
Tumor cells may be eliminated by increasing their temperature. This is achieved via photothermal therapy (PTT) by penetrating the tumor tissue with near‐infrared light and converting light energy into heat using photothermal agents. Copper sulfide nanoparticles (CuS NPs) are commonly used as PTAs in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582616/ https://www.ncbi.nlm.nih.gov/pubmed/37933283 http://dx.doi.org/10.1002/EXP.20220161 |
Sumario: | Tumor cells may be eliminated by increasing their temperature. This is achieved via photothermal therapy (PTT) by penetrating the tumor tissue with near‐infrared light and converting light energy into heat using photothermal agents. Copper sulfide nanoparticles (CuS NPs) are commonly used as PTAs in PTT. In this review, we aimed to discuss the synergism between tumor PTT with CuS NPs and other therapies such as chemotherapy, radiotherapy, dynamic therapies (photodynamic, chemodynamic, and sonodynamic therapy), immunotherapy, gene therapy, gas therapy, and magnetic hyperthermia. Furthermore, we summarized the results obtained with a combination of two treatments and at least two therapies, with PTT as one of the included therapies. Finally, we summarized the benefits and drawbacks of various therapeutic options and state of the art CuS‐based PTT and provided future directions for such therapies. |
---|