Cargando…
Development of a sensitive microplate assay for characterizing RNA methyltransferase activity: Implications for epitranscriptomics and drug development
RNA methylation is a ubiquitous post-transcriptional modification found in diverse RNA classes and is a critical regulator of gene expression. In this study, we used Zika virus RNA methyltransferase (MTase) to develop a highly sensitive microplate assay that uses a biotinylated RNA substrate and rad...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582764/ https://www.ncbi.nlm.nih.gov/pubmed/37716702 http://dx.doi.org/10.1016/j.jbc.2023.105257 |
_version_ | 1785122405322063872 |
---|---|
author | Mensah, Isaiah K. Norvil, Allison B. He, Ming Lendy, Emma Hjortland, Nicole Tan, Hern Pomerantz, Richard T. Mesecar, Andrew Gowher, Humaira |
author_facet | Mensah, Isaiah K. Norvil, Allison B. He, Ming Lendy, Emma Hjortland, Nicole Tan, Hern Pomerantz, Richard T. Mesecar, Andrew Gowher, Humaira |
author_sort | Mensah, Isaiah K. |
collection | PubMed |
description | RNA methylation is a ubiquitous post-transcriptional modification found in diverse RNA classes and is a critical regulator of gene expression. In this study, we used Zika virus RNA methyltransferase (MTase) to develop a highly sensitive microplate assay that uses a biotinylated RNA substrate and radiolabeled AdoMet coenzyme. The assay is fast, highly reproducible, exhibits linear progress-curve kinetics under multiple turnover conditions, has high sensitivity in competitive inhibition assays, and significantly lower background levels compared with the currently used method. Using our newly developed microplate assay, we observed no significant difference in the catalytic constants of the full-length nonstructural protein 5 enzyme and the truncated MTase domain. These data suggest that, unlike the Zika virus RNA-dependent RNA polymerase activity, the MTase activity is unaffected by RNA-dependent RNA polymerase–MTase interdomain interaction. Given its quantitative nature and accuracy, this method can be used to characterize various RNA MTases, and, therefore, significantly contribute to the field of epitranscriptomics and drug development against infectious diseases. |
format | Online Article Text |
id | pubmed-10582764 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-105827642023-10-19 Development of a sensitive microplate assay for characterizing RNA methyltransferase activity: Implications for epitranscriptomics and drug development Mensah, Isaiah K. Norvil, Allison B. He, Ming Lendy, Emma Hjortland, Nicole Tan, Hern Pomerantz, Richard T. Mesecar, Andrew Gowher, Humaira J Biol Chem Research Article RNA methylation is a ubiquitous post-transcriptional modification found in diverse RNA classes and is a critical regulator of gene expression. In this study, we used Zika virus RNA methyltransferase (MTase) to develop a highly sensitive microplate assay that uses a biotinylated RNA substrate and radiolabeled AdoMet coenzyme. The assay is fast, highly reproducible, exhibits linear progress-curve kinetics under multiple turnover conditions, has high sensitivity in competitive inhibition assays, and significantly lower background levels compared with the currently used method. Using our newly developed microplate assay, we observed no significant difference in the catalytic constants of the full-length nonstructural protein 5 enzyme and the truncated MTase domain. These data suggest that, unlike the Zika virus RNA-dependent RNA polymerase activity, the MTase activity is unaffected by RNA-dependent RNA polymerase–MTase interdomain interaction. Given its quantitative nature and accuracy, this method can be used to characterize various RNA MTases, and, therefore, significantly contribute to the field of epitranscriptomics and drug development against infectious diseases. American Society for Biochemistry and Molecular Biology 2023-09-14 /pmc/articles/PMC10582764/ /pubmed/37716702 http://dx.doi.org/10.1016/j.jbc.2023.105257 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Mensah, Isaiah K. Norvil, Allison B. He, Ming Lendy, Emma Hjortland, Nicole Tan, Hern Pomerantz, Richard T. Mesecar, Andrew Gowher, Humaira Development of a sensitive microplate assay for characterizing RNA methyltransferase activity: Implications for epitranscriptomics and drug development |
title | Development of a sensitive microplate assay for characterizing RNA methyltransferase activity: Implications for epitranscriptomics and drug development |
title_full | Development of a sensitive microplate assay for characterizing RNA methyltransferase activity: Implications for epitranscriptomics and drug development |
title_fullStr | Development of a sensitive microplate assay for characterizing RNA methyltransferase activity: Implications for epitranscriptomics and drug development |
title_full_unstemmed | Development of a sensitive microplate assay for characterizing RNA methyltransferase activity: Implications for epitranscriptomics and drug development |
title_short | Development of a sensitive microplate assay for characterizing RNA methyltransferase activity: Implications for epitranscriptomics and drug development |
title_sort | development of a sensitive microplate assay for characterizing rna methyltransferase activity: implications for epitranscriptomics and drug development |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582764/ https://www.ncbi.nlm.nih.gov/pubmed/37716702 http://dx.doi.org/10.1016/j.jbc.2023.105257 |
work_keys_str_mv | AT mensahisaiahk developmentofasensitivemicroplateassayforcharacterizingrnamethyltransferaseactivityimplicationsforepitranscriptomicsanddrugdevelopment AT norvilallisonb developmentofasensitivemicroplateassayforcharacterizingrnamethyltransferaseactivityimplicationsforepitranscriptomicsanddrugdevelopment AT heming developmentofasensitivemicroplateassayforcharacterizingrnamethyltransferaseactivityimplicationsforepitranscriptomicsanddrugdevelopment AT lendyemma developmentofasensitivemicroplateassayforcharacterizingrnamethyltransferaseactivityimplicationsforepitranscriptomicsanddrugdevelopment AT hjortlandnicole developmentofasensitivemicroplateassayforcharacterizingrnamethyltransferaseactivityimplicationsforepitranscriptomicsanddrugdevelopment AT tanhern developmentofasensitivemicroplateassayforcharacterizingrnamethyltransferaseactivityimplicationsforepitranscriptomicsanddrugdevelopment AT pomerantzrichardt developmentofasensitivemicroplateassayforcharacterizingrnamethyltransferaseactivityimplicationsforepitranscriptomicsanddrugdevelopment AT mesecarandrew developmentofasensitivemicroplateassayforcharacterizingrnamethyltransferaseactivityimplicationsforepitranscriptomicsanddrugdevelopment AT gowherhumaira developmentofasensitivemicroplateassayforcharacterizingrnamethyltransferaseactivityimplicationsforepitranscriptomicsanddrugdevelopment |