Cargando…
Identifying depression and its determinants upon initiating treatment: ChatGPT versus primary care physicians
OBJECTIVE: To compare evaluations of depressive episodes and suggested treatment protocols generated by Chat Generative Pretrained Transformer (ChatGPT)-3 and ChatGPT-4 with the recommendations of primary care physicians. METHODS: Vignettes were input to the ChatGPT interface. These vignettes focuse...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582915/ https://www.ncbi.nlm.nih.gov/pubmed/37844967 http://dx.doi.org/10.1136/fmch-2023-002391 |
_version_ | 1785122443344478208 |
---|---|
author | Levkovich, Inbar Elyoseph, Zohar |
author_facet | Levkovich, Inbar Elyoseph, Zohar |
author_sort | Levkovich, Inbar |
collection | PubMed |
description | OBJECTIVE: To compare evaluations of depressive episodes and suggested treatment protocols generated by Chat Generative Pretrained Transformer (ChatGPT)-3 and ChatGPT-4 with the recommendations of primary care physicians. METHODS: Vignettes were input to the ChatGPT interface. These vignettes focused primarily on hypothetical patients with symptoms of depression during initial consultations. The creators of these vignettes meticulously designed eight distinct versions in which they systematically varied patient attributes (sex, socioeconomic status (blue collar worker or white collar worker) and depression severity (mild or severe)). Each variant was subsequently introduced into ChatGPT-3.5 and ChatGPT-4. Each vignette was repeated 10 times to ensure consistency and reliability of the ChatGPT responses. RESULTS: For mild depression, ChatGPT-3.5 and ChatGPT-4 recommended psychotherapy in 95.0% and 97.5% of cases, respectively. Primary care physicians, however, recommended psychotherapy in only 4.3% of cases. For severe cases, ChatGPT favoured an approach that combined psychotherapy, while primary care physicians recommended a combined approach. The pharmacological recommendations of ChatGPT-3.5 and ChatGPT-4 showed a preference for exclusive use of antidepressants (74% and 68%, respectively), in contrast with primary care physicians, who typically recommended a mix of antidepressants and anxiolytics/hypnotics (67.4%). Unlike primary care physicians, ChatGPT showed no gender or socioeconomic biases in its recommendations. CONCLUSION: ChatGPT-3.5 and ChatGPT-4 aligned well with accepted guidelines for managing mild and severe depression, without showing the gender or socioeconomic biases observed among primary care physicians. Despite the suggested potential benefit of using atificial intelligence (AI) chatbots like ChatGPT to enhance clinical decision making, further research is needed to refine AI recommendations for severe cases and to consider potential risks and ethical issues. |
format | Online Article Text |
id | pubmed-10582915 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BMJ Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-105829152023-10-19 Identifying depression and its determinants upon initiating treatment: ChatGPT versus primary care physicians Levkovich, Inbar Elyoseph, Zohar Fam Med Community Health Original Research OBJECTIVE: To compare evaluations of depressive episodes and suggested treatment protocols generated by Chat Generative Pretrained Transformer (ChatGPT)-3 and ChatGPT-4 with the recommendations of primary care physicians. METHODS: Vignettes were input to the ChatGPT interface. These vignettes focused primarily on hypothetical patients with symptoms of depression during initial consultations. The creators of these vignettes meticulously designed eight distinct versions in which they systematically varied patient attributes (sex, socioeconomic status (blue collar worker or white collar worker) and depression severity (mild or severe)). Each variant was subsequently introduced into ChatGPT-3.5 and ChatGPT-4. Each vignette was repeated 10 times to ensure consistency and reliability of the ChatGPT responses. RESULTS: For mild depression, ChatGPT-3.5 and ChatGPT-4 recommended psychotherapy in 95.0% and 97.5% of cases, respectively. Primary care physicians, however, recommended psychotherapy in only 4.3% of cases. For severe cases, ChatGPT favoured an approach that combined psychotherapy, while primary care physicians recommended a combined approach. The pharmacological recommendations of ChatGPT-3.5 and ChatGPT-4 showed a preference for exclusive use of antidepressants (74% and 68%, respectively), in contrast with primary care physicians, who typically recommended a mix of antidepressants and anxiolytics/hypnotics (67.4%). Unlike primary care physicians, ChatGPT showed no gender or socioeconomic biases in its recommendations. CONCLUSION: ChatGPT-3.5 and ChatGPT-4 aligned well with accepted guidelines for managing mild and severe depression, without showing the gender or socioeconomic biases observed among primary care physicians. Despite the suggested potential benefit of using atificial intelligence (AI) chatbots like ChatGPT to enhance clinical decision making, further research is needed to refine AI recommendations for severe cases and to consider potential risks and ethical issues. BMJ Publishing Group 2023-10-16 /pmc/articles/PMC10582915/ /pubmed/37844967 http://dx.doi.org/10.1136/fmch-2023-002391 Text en © Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) . |
spellingShingle | Original Research Levkovich, Inbar Elyoseph, Zohar Identifying depression and its determinants upon initiating treatment: ChatGPT versus primary care physicians |
title | Identifying depression and its determinants upon initiating treatment: ChatGPT versus primary care physicians |
title_full | Identifying depression and its determinants upon initiating treatment: ChatGPT versus primary care physicians |
title_fullStr | Identifying depression and its determinants upon initiating treatment: ChatGPT versus primary care physicians |
title_full_unstemmed | Identifying depression and its determinants upon initiating treatment: ChatGPT versus primary care physicians |
title_short | Identifying depression and its determinants upon initiating treatment: ChatGPT versus primary care physicians |
title_sort | identifying depression and its determinants upon initiating treatment: chatgpt versus primary care physicians |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582915/ https://www.ncbi.nlm.nih.gov/pubmed/37844967 http://dx.doi.org/10.1136/fmch-2023-002391 |
work_keys_str_mv | AT levkovichinbar identifyingdepressionanditsdeterminantsuponinitiatingtreatmentchatgptversusprimarycarephysicians AT elyosephzohar identifyingdepressionanditsdeterminantsuponinitiatingtreatmentchatgptversusprimarycarephysicians |