Cargando…
Field phenotyping for African crops: overview and perspectives
Improvements in crop productivity are required to meet the dietary demands of the rapidly-increasing African population. The development of key staple crop cultivars that are high-yielding and resilient to biotic and abiotic stresses is essential. To contribute to this objective, high-throughput pla...
Autores principales: | Cudjoe, Daniel K., Virlet, Nicolas, Castle, March, Riche, Andrew B., Mhada, Manal, Waine, Toby W., Mohareb, Fady, Hawkesford, Malcolm J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582954/ https://www.ncbi.nlm.nih.gov/pubmed/37860243 http://dx.doi.org/10.3389/fpls.2023.1219673 |
Ejemplares similares
-
Machine Learning Methods for Automatic Segmentation of Images of Field- and Glasshouse-Based Plants for High-Throughput Phenotyping
por: Okyere, Frank Gyan, et al.
Publicado: (2023) -
Modeling the spatial-spectral characteristics of plants for nutrient status identification using hyperspectral data and deep learning methods
por: Okyere, Frank Gyan, et al.
Publicado: (2023) -
DeepCount: In-Field Automatic Quantification of Wheat Spikes Using Simple Linear Iterative Clustering and Deep Convolutional Neural Networks
por: Sadeghi-Tehran, Pouria, et al.
Publicado: (2019) -
Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping
por: Sadeghi-Tehran, Pouria, et al.
Publicado: (2017) -
Automated Method to Determine Two Critical Growth Stages of Wheat: Heading and Flowering
por: Sadeghi-Tehran, Pouria, et al.
Publicado: (2017)