Cargando…

Artificial intelligence applications in computed tomography in gastric cancer: a narrative review

BACKGROUND AND OBJECTIVE: Artificial intelligence (AI) is a revolutionary technique which is deeply impacting and reshaping clinical practice in oncology. This review aims to summarize the current status of the clinical application of AI-based computed tomography (CT) for gastric cancer (GC), focusi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Tingting, Wang, Hua, Ye, Zhaoxiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583011/
https://www.ncbi.nlm.nih.gov/pubmed/37859746
http://dx.doi.org/10.21037/tcr-23-201
Descripción
Sumario:BACKGROUND AND OBJECTIVE: Artificial intelligence (AI) is a revolutionary technique which is deeply impacting and reshaping clinical practice in oncology. This review aims to summarize the current status of the clinical application of AI-based computed tomography (CT) for gastric cancer (GC), focusing on diagnosis, genetic status detection and risk prediction of metastasis, prognosis and treatment efficacy. The challenges and prospects for future research will also be discussed. METHODS: We searched the PubMed/MEDLINE database to identify clinical studies published between 1990 and November 2022 that investigated AI applications in CT in GC. The major findings of the verified studies were summarized. KEY CONTENT AND FINDINGS: AI applications in CT images have attracted considerable attention in various fields such as diagnosis, prediction of metastasis risk, survival, and treatment response. These emerging techniques have shown a high potential to outperform clinicians in diagnostic accuracy and time-saving. CONCLUSIONS: AI-powered tools showed great potential to increase diagnostic accuracy and reduce radiologists’ workload. However, the goal of AI is not to replace human ability but to help oncologists make decisions in their practice. Therefore, radiologists should play a predominant role in AI applications and decide the best ways to integrate these complementary techniques within clinical practice.