Cargando…
Equivariant Graph Neural Networks for Toxicity Prediction
[Image: see text] Predictive modeling of toxicity is a crucial step in the drug discovery pipeline. It can help filter out molecules with a high probability of failing in the early stages of de novo drug design. Thus, several machine learning (ML) models have been developed to predict the toxicity o...
Autores principales: | Cremer, Julian, Medrano Sandonas, Leonardo, Tkatchenko, Alexandre, Clevert, Djork-Arné, De Fabritiis, Gianni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583285/ https://www.ncbi.nlm.nih.gov/pubmed/37690056 http://dx.doi.org/10.1021/acs.chemrestox.3c00032 |
Ejemplares similares
-
An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging
por: Gong, Shiqi, et al.
Publicado: (2022) -
Modeling Physico-Chemical ADMET Endpoints with Multitask Graph Convolutional Networks
por: Montanari, Floriane, et al.
Publicado: (2019) -
Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function
por: Boadu, Frimpong, et al.
Publicado: (2023) -
Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function
por: Boadu, Frimpong, et al.
Publicado: (2023) -
3D-equivariant graph neural networks for protein model quality assessment
por: Chen, Chen, et al.
Publicado: (2023)