Cargando…
Prediction of organic compound aqueous solubility using machine learning: a comparison study of descriptor-based and fingerprints-based models
A reliable and practical determination of a chemical species’ solubility in water continues to be examined using empirical observations and exhaustive experimental studies alone. Predictions of chemical solubility in water using data-driven algorithms can allow us to create a rationally designed, ef...
Autores principales: | Tayyebi, Arash, Alshami, Ali S, Rabiei, Zeinab, Yu, Xue, Ismail, Nadhem, Talukder, Musabbir Jahan, Power, Jason |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583449/ https://www.ncbi.nlm.nih.gov/pubmed/37853492 http://dx.doi.org/10.1186/s13321-023-00752-6 |
Ejemplares similares
-
Prediction of the
Aqueous Solubility of Compounds
Based on Light Gradient Boosting Machines with Molecular Fingerprints
and the Cuckoo Search Algorithm
por: Li, Mengshan, et al.
Publicado: (2022) -
Fingerprint Identification Using SIFT-Based Minutia Descriptors and Improved All Descriptor-Pair Matching
por: Zhou, Ru, et al.
Publicado: (2013) -
Descriptors for the Prediction of Partition Coefficients and Solubilities of Organophosphorus Compounds
por: Abraham, Michael H., et al.
Publicado: (2013) -
Comparison of Descriptor- and Fingerprint Sets in Machine Learning Models for ADME-Tox Targets
por: Orosz, Álmos, et al.
Publicado: (2022) -
AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds
por: Sorkun, Murat Cihan, et al.
Publicado: (2019)