Cargando…
Interpreting deep learning models for glioma survival classification using visualization and textual explanations
BACKGROUND: Saliency-based algorithms are able to explain the relationship between input image pixels and deep-learning model predictions. However, it may be difficult to assess the clinical value of the most important image features and the model predictions derived from the raw saliency map. This...
Autores principales: | Osadebey, Michael, Liu, Qinghui, Fuster-Garcia, Elies, Emblem, Kyrre E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583453/ https://www.ncbi.nlm.nih.gov/pubmed/37853371 http://dx.doi.org/10.1186/s12911-023-02320-2 |
Ejemplares similares
-
Quantification of Tissue Compression Identifies High-Grade Glioma Patients with Reduced Survival
por: Fuster-Garcia, Elies, et al.
Publicado: (2022) -
An efficient approach for textual data classification using deep learning
por: Alqahtani, Abdullah, et al.
Publicado: (2022) -
A Textual Backdoor Defense Method Based on Deep Feature Classification
por: Shao, Kun, et al.
Publicado: (2023) -
Biomedical Imaging Modality Classification Using Combined Visual Features and Textual Terms
por: Han, Xian-Hua, et al.
Publicado: (2011) -
MR elastography identifies regions of extracellular matrix reorganization associated with shorter survival in glioblastoma patients
por: Svensson, Siri Fløgstad, et al.
Publicado: (2023)