Cargando…
Revealing the diagnostic value and immune infiltration of senescence-related genes in endometriosis: a combined single-cell and machine learning analysis
Introduction: Endometriosis is a prevalent and recurrent medical condition associated with symptoms such as pelvic discomfort, dysmenorrhea, and reproductive challenges. Furthermore, it has the potential to progress into a malignant state, significantly impacting the quality of life for affected ind...
Autores principales: | Zou, Lian, Meng, Lou, Xu, Yan, Wang, Kana, Zhang, Jiawen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583561/ https://www.ncbi.nlm.nih.gov/pubmed/37860112 http://dx.doi.org/10.3389/fphar.2023.1259467 |
Ejemplares similares
-
Integration analysis of senescence-related genes to predict prognosis and immunotherapy response in soft-tissue sarcoma: evidence based on machine learning and experiments
por: Qi, Lin, et al.
Publicado: (2023) -
Diagnostic gene biomarkers for predicting immune infiltration in endometriosis
por: Xie, Chengmao, et al.
Publicado: (2022) -
Single-cell transcriptomics reveals immune infiltrate in sepsis
por: Tu, Xusheng, et al.
Publicado: (2023) -
Using Machine Learning to Predict Synergistic Antimalarial Compound Combinations With Novel Structures
por: Mason, Daniel J., et al.
Publicado: (2018) -
Integrated bioinformatics analysis uncovers characteristic genes and molecular subtyping system for endometriosis
por: Wang, Zhaowei, et al.
Publicado: (2022)