Cargando…
Anatomy segmentation in laparoscopic surgery: comparison of machine learning and human expertise – an experimental study
BACKGROUND: Lack of anatomy recognition represents a clinically relevant risk in abdominal surgery. Machine learning (ML) methods can help identify visible patterns and risk structures; however, their practical value remains largely unclear. MATERIALS AND METHODS: Based on a novel dataset of 13 195...
Autores principales: | Kolbinger, Fiona R., Rinner, Franziska M., Jenke, Alexander C., Carstens, Matthias, Krell, Stefanie, Leger, Stefan, Distler, Marius, Weitz, Jürgen, Speidel, Stefanie, Bodenstedt, Sebastian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583931/ https://www.ncbi.nlm.nih.gov/pubmed/37526099 http://dx.doi.org/10.1097/JS9.0000000000000595 |
Ejemplares similares
-
The Dresden Surgical Anatomy Dataset for Abdominal Organ Segmentation in Surgical Data Science
por: Carstens, Matthias, et al.
Publicado: (2023) -
Associations Between Binocular Depth Perception and Performance Gains in Laparoscopic Skill Acquisition
por: Hatzipanayioti, Adamantini, et al.
Publicado: (2021) -
The image-based preoperative fistula risk score (preFRS) predicts postoperative pancreatic fistula in patients undergoing pancreatic head resection
por: Kolbinger, Fiona R., et al.
Publicado: (2022) -
Does practice make perfect? Laparoscopic training mainly improves motion efficiency: a prospective trial
por: von Bechtolsheim, Felix, et al.
Publicado: (2023) -
Does caffeine consumption affect laparoscopic skills in a motion tracking analysis? A prospective, randomized, blinded crossover trial
por: von Bechtolsheim, Felix, et al.
Publicado: (2021)