Cargando…

Altered Eye Movements During Reading With Simulated Central and Peripheral Visual Field Defects

PURPOSE: Although foveal vision provides fine spatial information, parafoveal and peripheral vision are also known to be important for efficient reading behaviors. Here we systematically investigate how different types and sizes of visual field defects affect the way visual information is acquired v...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Haojue, Kwon, MiYoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584020/
https://www.ncbi.nlm.nih.gov/pubmed/37843494
http://dx.doi.org/10.1167/iovs.64.13.21
Descripción
Sumario:PURPOSE: Although foveal vision provides fine spatial information, parafoveal and peripheral vision are also known to be important for efficient reading behaviors. Here we systematically investigate how different types and sizes of visual field defects affect the way visual information is acquired via eye movements during reading. METHODS: Using gaze-contingent displays, simulated scotomas were induced in 24 adults with normal or corrected-to-normal vision during a reading task. The study design included peripheral and central scotomas of varying sizes (aperture or scotoma size of 2°, 4°, 6°, 8°, and 10°) and no-scotoma conditions. Eye movements (e.g., forward/backward saccades, fixations, microsaccades) were plotted as a function of either the aperture or scotoma size, and their relationships were characterized by the best fitting model. RESULTS: When the aperture size of the peripheral scotoma decreased below 6° (11 visible letters), there were significant decreases in saccade amplitude and velocity, as well as substantial increases in fixation duration and the number of fixations. Its dependency on the aperture size is best characterized by an exponential decay or growth function in log-linear coordinates. However, saccade amplitude and velocity, fixation duration, and forward/regressive saccades increased more or less linearly with increasing central scotoma size in log-linear coordinates. CONCLUSIONS: Our results showed differential impacts of central and peripheral vision loss on reading behaviors while lending further support for the importance of foveal and parafoveal vision in reading. These apparently deviated oculomotor behaviors may in part reflect optimal reading strategies to compensate for the loss of visual information.