Cargando…
Ensemble learning approach for advanced metering infrastructure in future smart grids
Typically, load forecasting models are trained in an offline setting and then used to generate predictions in an online setting. However, this approach, known as batch learning, is limited in its ability to integrate new load information that becomes available in real-time. On the other hand, online...
Autores principales: | Irfan, Muhammad, Ayub, Nasir, Althobiani, Faisal, Masood, Sabeen, Arbab Ahmed, Qazi, Saeed, Muhammad Hamza, Rahman, Saifur, Abdushkour, Hesham, Gommosani, Mohammad E., Shamji, V. R., Faraj Mursal, Salim Nasar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584117/ https://www.ncbi.nlm.nih.gov/pubmed/37851626 http://dx.doi.org/10.1371/journal.pone.0289672 |
Ejemplares similares
-
Unusual Driver Behavior Detection in Videos Using Deep Learning Models
por: Abosaq, Hamad Ali, et al.
Publicado: (2022) -
Multi-region electricity demand prediction with ensemble deep neural networks
por: Irfan, Muhammad, et al.
Publicado: (2023) -
An Adaptive Network Design for Advanced Metering Infrastructure in a Smart Grid
por: Kim, Jin-Woo, et al.
Publicado: (2022) -
Assessing spatiotemporal trends of total and extreme precipitation in a subtropical highland region: A climate perspective
por: Ghanim, Abdulnoor Ali Jazem, et al.
Publicado: (2023) -
Dual-polarized 8-port sub 6 GHz 5G MIMO diamond-ring slot antenna for smart phone and portable wireless applications
por: Fawad, Yasir, et al.
Publicado: (2023)