Cargando…

A Multimodal Multipath Artificial Intelligence System for Diagnosing Gastric Protruded Lesions on Endoscopy and Endoscopic Ultrasonography Images

INTRODUCTION: The aim of this study was to develop a novel artificial intelligence (AI) system that can automatically detect and classify protruded gastric lesions and help address the challenges of diagnostic accuracy and inter-reader variability encountered in routine diagnostic workflow. METHODS:...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Chang, Hua, Yifei, Zhang, Min, Wang, Yun, Li, Wenjie, Ding, Yanbing, She, Qiang, Zhang, Weifeng, Si, Xinmin, Kong, Zihao, Liu, Baiyun, Chen, Weidao, Wu, Jiangfen, Dang, Yini, Zhang, Guoxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584296/
https://www.ncbi.nlm.nih.gov/pubmed/36434804
http://dx.doi.org/10.14309/ctg.0000000000000551
_version_ 1785122708332216320
author Zhu, Chang
Hua, Yifei
Zhang, Min
Wang, Yun
Li, Wenjie
Ding, Yanbing
She, Qiang
Zhang, Weifeng
Si, Xinmin
Kong, Zihao
Liu, Baiyun
Chen, Weidao
Wu, Jiangfen
Dang, Yini
Zhang, Guoxin
author_facet Zhu, Chang
Hua, Yifei
Zhang, Min
Wang, Yun
Li, Wenjie
Ding, Yanbing
She, Qiang
Zhang, Weifeng
Si, Xinmin
Kong, Zihao
Liu, Baiyun
Chen, Weidao
Wu, Jiangfen
Dang, Yini
Zhang, Guoxin
author_sort Zhu, Chang
collection PubMed
description INTRODUCTION: The aim of this study was to develop a novel artificial intelligence (AI) system that can automatically detect and classify protruded gastric lesions and help address the challenges of diagnostic accuracy and inter-reader variability encountered in routine diagnostic workflow. METHODS: We analyzed data from 1,366 participants who underwent gastroscopy at Jiangsu Provincial People's Hospital and Yangzhou First People's Hospital between December 2010 and December 2020. These patients were diagnosed with submucosal tumors (SMTs) including gastric stromal tumors (GISTs), gastric leiomyomas (GILs), and gastric ectopic pancreas (GEP). We trained and validated a multimodal, multipath AI system (MMP-AI) using the data set. We assessed the diagnostic performance of the proposed AI system using the area under the receiver-operating characteristic curve (AUC) and compared its performance with that of endoscopists with more than 5 years of experience in endoscopic diagnosis. RESULTS: In the ternary classification task among subtypes of SMTs using modality images, MMP-AI achieved the highest AUCs of 0.896, 0.890, and 0.999 for classifying GIST, GIL, and GEP, respectively. The performance of the model was verified using both external and internal longitudinal data sets. Compared with endoscopists, MMP-AI achieved higher recognition accuracy for SMTs. DISCUSSION: We developed a system called MMP-AI to identify protruding benign gastric lesions. This system can be used not only for white-light endoscope image recognition but also for endoscopic ultrasonography image analysis.
format Online
Article
Text
id pubmed-10584296
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Wolters Kluwer
record_format MEDLINE/PubMed
spelling pubmed-105842962023-10-19 A Multimodal Multipath Artificial Intelligence System for Diagnosing Gastric Protruded Lesions on Endoscopy and Endoscopic Ultrasonography Images Zhu, Chang Hua, Yifei Zhang, Min Wang, Yun Li, Wenjie Ding, Yanbing She, Qiang Zhang, Weifeng Si, Xinmin Kong, Zihao Liu, Baiyun Chen, Weidao Wu, Jiangfen Dang, Yini Zhang, Guoxin Clin Transl Gastroenterol Article INTRODUCTION: The aim of this study was to develop a novel artificial intelligence (AI) system that can automatically detect and classify protruded gastric lesions and help address the challenges of diagnostic accuracy and inter-reader variability encountered in routine diagnostic workflow. METHODS: We analyzed data from 1,366 participants who underwent gastroscopy at Jiangsu Provincial People's Hospital and Yangzhou First People's Hospital between December 2010 and December 2020. These patients were diagnosed with submucosal tumors (SMTs) including gastric stromal tumors (GISTs), gastric leiomyomas (GILs), and gastric ectopic pancreas (GEP). We trained and validated a multimodal, multipath AI system (MMP-AI) using the data set. We assessed the diagnostic performance of the proposed AI system using the area under the receiver-operating characteristic curve (AUC) and compared its performance with that of endoscopists with more than 5 years of experience in endoscopic diagnosis. RESULTS: In the ternary classification task among subtypes of SMTs using modality images, MMP-AI achieved the highest AUCs of 0.896, 0.890, and 0.999 for classifying GIST, GIL, and GEP, respectively. The performance of the model was verified using both external and internal longitudinal data sets. Compared with endoscopists, MMP-AI achieved higher recognition accuracy for SMTs. DISCUSSION: We developed a system called MMP-AI to identify protruding benign gastric lesions. This system can be used not only for white-light endoscope image recognition but also for endoscopic ultrasonography image analysis. Wolters Kluwer 2022-11-26 /pmc/articles/PMC10584296/ /pubmed/36434804 http://dx.doi.org/10.14309/ctg.0000000000000551 Text en © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) , where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
spellingShingle Article
Zhu, Chang
Hua, Yifei
Zhang, Min
Wang, Yun
Li, Wenjie
Ding, Yanbing
She, Qiang
Zhang, Weifeng
Si, Xinmin
Kong, Zihao
Liu, Baiyun
Chen, Weidao
Wu, Jiangfen
Dang, Yini
Zhang, Guoxin
A Multimodal Multipath Artificial Intelligence System for Diagnosing Gastric Protruded Lesions on Endoscopy and Endoscopic Ultrasonography Images
title A Multimodal Multipath Artificial Intelligence System for Diagnosing Gastric Protruded Lesions on Endoscopy and Endoscopic Ultrasonography Images
title_full A Multimodal Multipath Artificial Intelligence System for Diagnosing Gastric Protruded Lesions on Endoscopy and Endoscopic Ultrasonography Images
title_fullStr A Multimodal Multipath Artificial Intelligence System for Diagnosing Gastric Protruded Lesions on Endoscopy and Endoscopic Ultrasonography Images
title_full_unstemmed A Multimodal Multipath Artificial Intelligence System for Diagnosing Gastric Protruded Lesions on Endoscopy and Endoscopic Ultrasonography Images
title_short A Multimodal Multipath Artificial Intelligence System for Diagnosing Gastric Protruded Lesions on Endoscopy and Endoscopic Ultrasonography Images
title_sort multimodal multipath artificial intelligence system for diagnosing gastric protruded lesions on endoscopy and endoscopic ultrasonography images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584296/
https://www.ncbi.nlm.nih.gov/pubmed/36434804
http://dx.doi.org/10.14309/ctg.0000000000000551
work_keys_str_mv AT zhuchang amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT huayifei amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT zhangmin amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT wangyun amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT liwenjie amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT dingyanbing amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT sheqiang amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT zhangweifeng amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT sixinmin amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT kongzihao amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT liubaiyun amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT chenweidao amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT wujiangfen amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT dangyini amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT zhangguoxin amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT zhuchang multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT huayifei multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT zhangmin multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT wangyun multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT liwenjie multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT dingyanbing multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT sheqiang multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT zhangweifeng multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT sixinmin multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT kongzihao multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT liubaiyun multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT chenweidao multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT wujiangfen multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT dangyini multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages
AT zhangguoxin multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages