Cargando…
A Multimodal Multipath Artificial Intelligence System for Diagnosing Gastric Protruded Lesions on Endoscopy and Endoscopic Ultrasonography Images
INTRODUCTION: The aim of this study was to develop a novel artificial intelligence (AI) system that can automatically detect and classify protruded gastric lesions and help address the challenges of diagnostic accuracy and inter-reader variability encountered in routine diagnostic workflow. METHODS:...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584296/ https://www.ncbi.nlm.nih.gov/pubmed/36434804 http://dx.doi.org/10.14309/ctg.0000000000000551 |
_version_ | 1785122708332216320 |
---|---|
author | Zhu, Chang Hua, Yifei Zhang, Min Wang, Yun Li, Wenjie Ding, Yanbing She, Qiang Zhang, Weifeng Si, Xinmin Kong, Zihao Liu, Baiyun Chen, Weidao Wu, Jiangfen Dang, Yini Zhang, Guoxin |
author_facet | Zhu, Chang Hua, Yifei Zhang, Min Wang, Yun Li, Wenjie Ding, Yanbing She, Qiang Zhang, Weifeng Si, Xinmin Kong, Zihao Liu, Baiyun Chen, Weidao Wu, Jiangfen Dang, Yini Zhang, Guoxin |
author_sort | Zhu, Chang |
collection | PubMed |
description | INTRODUCTION: The aim of this study was to develop a novel artificial intelligence (AI) system that can automatically detect and classify protruded gastric lesions and help address the challenges of diagnostic accuracy and inter-reader variability encountered in routine diagnostic workflow. METHODS: We analyzed data from 1,366 participants who underwent gastroscopy at Jiangsu Provincial People's Hospital and Yangzhou First People's Hospital between December 2010 and December 2020. These patients were diagnosed with submucosal tumors (SMTs) including gastric stromal tumors (GISTs), gastric leiomyomas (GILs), and gastric ectopic pancreas (GEP). We trained and validated a multimodal, multipath AI system (MMP-AI) using the data set. We assessed the diagnostic performance of the proposed AI system using the area under the receiver-operating characteristic curve (AUC) and compared its performance with that of endoscopists with more than 5 years of experience in endoscopic diagnosis. RESULTS: In the ternary classification task among subtypes of SMTs using modality images, MMP-AI achieved the highest AUCs of 0.896, 0.890, and 0.999 for classifying GIST, GIL, and GEP, respectively. The performance of the model was verified using both external and internal longitudinal data sets. Compared with endoscopists, MMP-AI achieved higher recognition accuracy for SMTs. DISCUSSION: We developed a system called MMP-AI to identify protruding benign gastric lesions. This system can be used not only for white-light endoscope image recognition but also for endoscopic ultrasonography image analysis. |
format | Online Article Text |
id | pubmed-10584296 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Wolters Kluwer |
record_format | MEDLINE/PubMed |
spelling | pubmed-105842962023-10-19 A Multimodal Multipath Artificial Intelligence System for Diagnosing Gastric Protruded Lesions on Endoscopy and Endoscopic Ultrasonography Images Zhu, Chang Hua, Yifei Zhang, Min Wang, Yun Li, Wenjie Ding, Yanbing She, Qiang Zhang, Weifeng Si, Xinmin Kong, Zihao Liu, Baiyun Chen, Weidao Wu, Jiangfen Dang, Yini Zhang, Guoxin Clin Transl Gastroenterol Article INTRODUCTION: The aim of this study was to develop a novel artificial intelligence (AI) system that can automatically detect and classify protruded gastric lesions and help address the challenges of diagnostic accuracy and inter-reader variability encountered in routine diagnostic workflow. METHODS: We analyzed data from 1,366 participants who underwent gastroscopy at Jiangsu Provincial People's Hospital and Yangzhou First People's Hospital between December 2010 and December 2020. These patients were diagnosed with submucosal tumors (SMTs) including gastric stromal tumors (GISTs), gastric leiomyomas (GILs), and gastric ectopic pancreas (GEP). We trained and validated a multimodal, multipath AI system (MMP-AI) using the data set. We assessed the diagnostic performance of the proposed AI system using the area under the receiver-operating characteristic curve (AUC) and compared its performance with that of endoscopists with more than 5 years of experience in endoscopic diagnosis. RESULTS: In the ternary classification task among subtypes of SMTs using modality images, MMP-AI achieved the highest AUCs of 0.896, 0.890, and 0.999 for classifying GIST, GIL, and GEP, respectively. The performance of the model was verified using both external and internal longitudinal data sets. Compared with endoscopists, MMP-AI achieved higher recognition accuracy for SMTs. DISCUSSION: We developed a system called MMP-AI to identify protruding benign gastric lesions. This system can be used not only for white-light endoscope image recognition but also for endoscopic ultrasonography image analysis. Wolters Kluwer 2022-11-26 /pmc/articles/PMC10584296/ /pubmed/36434804 http://dx.doi.org/10.14309/ctg.0000000000000551 Text en © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) , where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. |
spellingShingle | Article Zhu, Chang Hua, Yifei Zhang, Min Wang, Yun Li, Wenjie Ding, Yanbing She, Qiang Zhang, Weifeng Si, Xinmin Kong, Zihao Liu, Baiyun Chen, Weidao Wu, Jiangfen Dang, Yini Zhang, Guoxin A Multimodal Multipath Artificial Intelligence System for Diagnosing Gastric Protruded Lesions on Endoscopy and Endoscopic Ultrasonography Images |
title | A Multimodal Multipath Artificial Intelligence System for Diagnosing Gastric Protruded Lesions on Endoscopy and Endoscopic Ultrasonography Images |
title_full | A Multimodal Multipath Artificial Intelligence System for Diagnosing Gastric Protruded Lesions on Endoscopy and Endoscopic Ultrasonography Images |
title_fullStr | A Multimodal Multipath Artificial Intelligence System for Diagnosing Gastric Protruded Lesions on Endoscopy and Endoscopic Ultrasonography Images |
title_full_unstemmed | A Multimodal Multipath Artificial Intelligence System for Diagnosing Gastric Protruded Lesions on Endoscopy and Endoscopic Ultrasonography Images |
title_short | A Multimodal Multipath Artificial Intelligence System for Diagnosing Gastric Protruded Lesions on Endoscopy and Endoscopic Ultrasonography Images |
title_sort | multimodal multipath artificial intelligence system for diagnosing gastric protruded lesions on endoscopy and endoscopic ultrasonography images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584296/ https://www.ncbi.nlm.nih.gov/pubmed/36434804 http://dx.doi.org/10.14309/ctg.0000000000000551 |
work_keys_str_mv | AT zhuchang amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT huayifei amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT zhangmin amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT wangyun amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT liwenjie amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT dingyanbing amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT sheqiang amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT zhangweifeng amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT sixinmin amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT kongzihao amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT liubaiyun amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT chenweidao amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT wujiangfen amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT dangyini amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT zhangguoxin amultimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT zhuchang multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT huayifei multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT zhangmin multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT wangyun multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT liwenjie multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT dingyanbing multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT sheqiang multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT zhangweifeng multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT sixinmin multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT kongzihao multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT liubaiyun multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT chenweidao multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT wujiangfen multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT dangyini multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages AT zhangguoxin multimodalmultipathartificialintelligencesystemfordiagnosinggastricprotrudedlesionsonendoscopyandendoscopicultrasonographyimages |