Cargando…
From real-time adaptation to social learning in robot ecosystems
While evolutionary robotics can create novel morphologies and controllers that are well-adapted to their environments, learning is still the most efficient way to adapt to changes that occur on shorter time scales. Learning proposals for evolving robots to date have focused on new individuals either...
Autores principales: | Szorkovszky, Alex, Veenstra, Frank, Glette, Kyrre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584317/ https://www.ncbi.nlm.nih.gov/pubmed/37860631 http://dx.doi.org/10.3389/frobt.2023.1232708 |
Ejemplares similares
-
MAP-Elites Enables Powerful Stepping Stones and Diversity for Modular Robotics
por: Nordmoen, Jørgen, et al.
Publicado: (2021) -
Editorial: Evolving Robotic Morphologies
por: Howard, David, et al.
Publicado: (2022) -
Lamarckian Evolution of Simulated Modular Robots
por: Jelisavcic, Milan, et al.
Publicado: (2019) -
A Framework for Automatic Behavior Generation in Multi-Function Swarms
por: Engebraaten, Sondre A., et al.
Publicado: (2020) -
Intrinsic motivation learning for real robot applications
por: Rayyes, Rania
Publicado: (2023)