Cargando…

Uncovering new families and folds in the natural protein universe

We are now entering a new era in protein sequence and structure annotation, with hundreds of millions of predicted protein structures made available through the AlphaFold database(1). These models cover nearly all proteins that are known, including those challenging to annotate for function or putat...

Descripción completa

Detalles Bibliográficos
Autores principales: Durairaj, Janani, Waterhouse, Andrew M., Mets, Toomas, Brodiazhenko, Tetiana, Abdullah, Minhal, Studer, Gabriel, Tauriello, Gerardo, Akdel, Mehmet, Andreeva, Antonina, Bateman, Alex, Tenson, Tanel, Hauryliuk, Vasili, Schwede, Torsten, Pereira, Joana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584680/
https://www.ncbi.nlm.nih.gov/pubmed/37704037
http://dx.doi.org/10.1038/s41586-023-06622-3
Descripción
Sumario:We are now entering a new era in protein sequence and structure annotation, with hundreds of millions of predicted protein structures made available through the AlphaFold database(1). These models cover nearly all proteins that are known, including those challenging to annotate for function or putative biological role using standard homology-based approaches. In this study, we examine the extent to which the AlphaFold database has structurally illuminated this ‘dark matter’ of the natural protein universe at high predicted accuracy. We further describe the protein diversity that these models cover as an annotated interactive sequence similarity network, accessible at https://uniprot3d.org/atlas/AFDB90v4. By searching for novelties from sequence, structure and semantic perspectives, we uncovered the β-flower fold, added several protein families to Pfam database(2) and experimentally demonstrated that one of these belongs to a new superfamily of translation-targeting toxin–antitoxin systems, TumE–TumA. This work underscores the value of large-scale efforts in identifying, annotating and prioritizing new protein families. By leveraging the recent deep learning revolution in protein bioinformatics, we can now shed light into uncharted areas of the protein universe at an unprecedented scale, paving the way to innovations in life sciences and biotechnology.