Cargando…
Quantitative LC–MS study of compounds found predictive of COVID-19 severity and outcome
INTRODUCTION: Since the beginning of the SARS-CoV-2 pandemic in December 2019 multiple metabolomics studies have proposed predictive biomarkers of infection severity and outcome. Whilst some trends have emerged, the findings remain intangible and uninformative when it comes to new patients. OBJECTIV...
Autores principales: | Roberts, Ivayla, Wright Muelas, Marina, Taylor, Joseph M., Davison, Andrew S., Winder, Catherine L., Goodacre, Royston, Kell, Douglas B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584727/ https://www.ncbi.nlm.nih.gov/pubmed/37853293 http://dx.doi.org/10.1007/s11306-023-02048-0 |
Ejemplares similares
-
Untargeted metabolomics of COVID-19 patient serum reveals potential prognostic markers of both severity and outcome
por: Roberts, Ivayla, et al.
Publicado: (2021) -
MassGenie: A Transformer-Based Deep Learning Method for Identifying Small Molecules from Their Mass Spectra
por: Shrivastava, Aditya Divyakant, et al.
Publicado: (2021) -
Automated workflows for accurate mass-based putative metabolite
identification in LC/MS-derived metabolomic datasets
por: Brown, Marie, et al.
Publicado: (2011) -
An untargeted metabolomics strategy to measure differences in metabolite uptake and excretion by mammalian cell lines
por: Wright Muelas, Marina, et al.
Publicado: (2020) -
MUSCLE: automated multi-objective evolutionary optimization of targeted LC-MS/MS analysis
por: Bradbury, James, et al.
Publicado: (2015)