Cargando…
A Deep Learning Image Reconstruction Algorithm for Improving Image Quality and Hepatic Lesion Detectability in Abdominal Dual-Energy Computed Tomography: Preliminary Results
This study aimed to compare the performance of deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V) in improving image quality and diagnostic performance using virtual monochromatic spectral images in abdominal dual-energy computed tomography (DECT...
Autores principales: | Chu, Bingqian, Gan, Lu, Shen, Yi, Song, Jian, Liu, Ling, Li, Jianying, Liu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584787/ https://www.ncbi.nlm.nih.gov/pubmed/37580484 http://dx.doi.org/10.1007/s10278-023-00893-y |
Ejemplares similares
-
Deep learning image reconstruction algorithms in low-dose radiation abdominal computed tomography: assessment of image quality and lesion diagnostic confidence
por: Yang, Chun, et al.
Publicado: (2023) -
Deep learning image reconstruction algorithm for carotid dual-energy computed tomography angiography: evaluation of image quality and diagnostic performance
por: Jiang, Chenyu, et al.
Publicado: (2022) -
Application of a deep learning image reconstruction (DLIR) algorithm in head CT imaging for children to improve image quality and lesion detection
por: Sun, Jihang, et al.
Publicado: (2021) -
Deep learning image reconstruction algorithm: impact on image quality in coronary computed tomography angiography
por: De Santis, Domenico, et al.
Publicado: (2023) -
The value of using a deep learning image reconstruction algorithm of thinner slice thickness to balance the image noise and spatial resolution in low-dose abdominal CT
por: Wang, Huan, et al.
Publicado: (2022)