Cargando…

Fault diagnosis of anti-friction bearings based on Bi-dimensional ensemble local mean decomposition and optimized dynamic least square support vector machine

In order to ensure the normal operation of rotating equipment, it is very important to quickly and efficiently diagnose the faults of anti-friction bearings. Hereto, fault diagnosis of anti-friction bearings based on Bi-dimensional ensemble local mean decomposition and optimized dynamic least square...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Zhengqiang, Han, Chang, Zhang, Guorong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584940/
https://www.ncbi.nlm.nih.gov/pubmed/37853075
http://dx.doi.org/10.1038/s41598-023-44996-6
Descripción
Sumario:In order to ensure the normal operation of rotating equipment, it is very important to quickly and efficiently diagnose the faults of anti-friction bearings. Hereto, fault diagnosis of anti-friction bearings based on Bi-dimensional ensemble local mean decomposition and optimized dynamic least square support vector machine (LSSVM) is presented in this paper. Bi-dimensional ensemble local mean decomposition, an extension of ensemble local mean decomposition from one-dimensional signal processing to Bi-dimensional signal processing, is used to extract the features of anti-friction bearings. Moreover, an optimized dynamic LSSVM is used to fault diagnosis of anti-friction bearings. The experimental results show that Bi-dimensional ensemble local mean decomposition is superior to Bi-dimensional local mean decomposition, optimized dynamic LSSVM is superior to traditional LSSVM, and the proposed Bi-dimensional ensemble local mean decomposition and optimized dynamic LSSVM method is effective for fault diagnosis of anti-friction bearings.