Cargando…
EEG-based epileptic seizure detection using binary dragonfly algorithm and deep neural network
Electroencephalogram (EEG) is one of the most common methods used for seizure detection as it records the electrical activity of the brain. Symmetry and asymmetry of EEG signals can be used as indicators of epileptic seizures. Normally, EEG signals are symmetrical in nature, with similar patterns on...
Autores principales: | Yogarajan, G., Alsubaie, Najah, Rajasekaran, G., Revathi, T., Alqahtani, Mohammed S., Abbas, Mohamed, Alshahrani, Madshush M., Soufiene, Ben Othman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584945/ https://www.ncbi.nlm.nih.gov/pubmed/37853025 http://dx.doi.org/10.1038/s41598-023-44318-w |
Ejemplares similares
-
Wavelength Selection for NIR Spectroscopy Based on the Binary Dragonfly Algorithm
por: Chen, Yuanyuan, et al.
Publicado: (2019) -
Hybrid Binary Dragonfly Algorithm with Simulated Annealing for Feature Selection
por: Chantar, Hamouda, et al.
Publicado: (2021) -
Improving diagnosis accuracy with an intelligent image retrieval system for lung pathologies detection: a features extractor approach
por: Souid, Abdelbaki, et al.
Publicado: (2023) -
Ride comfort and segmental vibration transmissibility analysis of an automobile passenger model under whole body vibration
por: Guruguntla, Veeresalingam, et al.
Publicado: (2023) -
Exploring Douglas-Peucker Algorithm in the Detection of Epileptic Seizure from Multicategory EEG Signals
por: Zarei, Roozbeh, et al.
Publicado: (2019)