Cargando…

The Antibacterial Effectiveness of Citrullus lanatus-Mediated Stannous Nanoparticles on Streptococcus mutans

Introduction Dental caries is a prevalent oral health issue caused by the colonization of Streptococcus mutans in the oral cavity. Citrullus lanatus, commonly known as watermelon, is rich in bioactive compounds that possess antibacterial potential. In this study, we aimed to synthesize stannous chlo...

Descripción completa

Detalles Bibliográficos
Autores principales: Rajagopal, Shruthi, Sugumaran, Surendar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584993/
https://www.ncbi.nlm.nih.gov/pubmed/37868455
http://dx.doi.org/10.7759/cureus.45504
_version_ 1785122857442869248
author Rajagopal, Shruthi
Sugumaran, Surendar
author_facet Rajagopal, Shruthi
Sugumaran, Surendar
author_sort Rajagopal, Shruthi
collection PubMed
description Introduction Dental caries is a prevalent oral health issue caused by the colonization of Streptococcus mutans in the oral cavity. Citrullus lanatus, commonly known as watermelon, is rich in bioactive compounds that possess antibacterial potential. In this study, we aimed to synthesize stannous chloride (SnCl(2)) nanoparticles (NPs) mediated by Citrullus lanatus extract and investigate their antibacterial effectiveness against Streptococcus mutans. Materials and method Stannous nanoparticles (SnNPs) synthesized by the green method were achieved by using the watermelon extract. Dilute stannous chloride solution was obtained by adding 0.45 g of stannous (Sn) chloride (Cl) powder to 60 mL of water, which was subjected to an orbital shaker with the watermelon extract. The nanoparticles obtained were subjected to characterization using antimicrobial testing, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray (EDAX) analysis, and scanning electron microscopy (SEM). Agar well diffusion method was used against specific strains of S. aureus, S. mutans, and Escherichia coli. Results The novel nanoparticles demonstrated promising antibacterial activity against S. mutans providing 10 mm of inhibitory action. Conclusion Due to its abundance of naturally occurring bioactive chemicals and improved efficacy against S. mutans, watermelon extract can be utilized to create stannous nanoparticles as opposed to the use of toxic chemicals. They can also be employed as oral administration systems.
format Online
Article
Text
id pubmed-10584993
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cureus
record_format MEDLINE/PubMed
spelling pubmed-105849932023-10-20 The Antibacterial Effectiveness of Citrullus lanatus-Mediated Stannous Nanoparticles on Streptococcus mutans Rajagopal, Shruthi Sugumaran, Surendar Cureus Dentistry Introduction Dental caries is a prevalent oral health issue caused by the colonization of Streptococcus mutans in the oral cavity. Citrullus lanatus, commonly known as watermelon, is rich in bioactive compounds that possess antibacterial potential. In this study, we aimed to synthesize stannous chloride (SnCl(2)) nanoparticles (NPs) mediated by Citrullus lanatus extract and investigate their antibacterial effectiveness against Streptococcus mutans. Materials and method Stannous nanoparticles (SnNPs) synthesized by the green method were achieved by using the watermelon extract. Dilute stannous chloride solution was obtained by adding 0.45 g of stannous (Sn) chloride (Cl) powder to 60 mL of water, which was subjected to an orbital shaker with the watermelon extract. The nanoparticles obtained were subjected to characterization using antimicrobial testing, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray (EDAX) analysis, and scanning electron microscopy (SEM). Agar well diffusion method was used against specific strains of S. aureus, S. mutans, and Escherichia coli. Results The novel nanoparticles demonstrated promising antibacterial activity against S. mutans providing 10 mm of inhibitory action. Conclusion Due to its abundance of naturally occurring bioactive chemicals and improved efficacy against S. mutans, watermelon extract can be utilized to create stannous nanoparticles as opposed to the use of toxic chemicals. They can also be employed as oral administration systems. Cureus 2023-09-18 /pmc/articles/PMC10584993/ /pubmed/37868455 http://dx.doi.org/10.7759/cureus.45504 Text en Copyright © 2023, Rajagopal et al. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Dentistry
Rajagopal, Shruthi
Sugumaran, Surendar
The Antibacterial Effectiveness of Citrullus lanatus-Mediated Stannous Nanoparticles on Streptococcus mutans
title The Antibacterial Effectiveness of Citrullus lanatus-Mediated Stannous Nanoparticles on Streptococcus mutans
title_full The Antibacterial Effectiveness of Citrullus lanatus-Mediated Stannous Nanoparticles on Streptococcus mutans
title_fullStr The Antibacterial Effectiveness of Citrullus lanatus-Mediated Stannous Nanoparticles on Streptococcus mutans
title_full_unstemmed The Antibacterial Effectiveness of Citrullus lanatus-Mediated Stannous Nanoparticles on Streptococcus mutans
title_short The Antibacterial Effectiveness of Citrullus lanatus-Mediated Stannous Nanoparticles on Streptococcus mutans
title_sort antibacterial effectiveness of citrullus lanatus-mediated stannous nanoparticles on streptococcus mutans
topic Dentistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584993/
https://www.ncbi.nlm.nih.gov/pubmed/37868455
http://dx.doi.org/10.7759/cureus.45504
work_keys_str_mv AT rajagopalshruthi theantibacterialeffectivenessofcitrulluslanatusmediatedstannousnanoparticlesonstreptococcusmutans
AT sugumaransurendar theantibacterialeffectivenessofcitrulluslanatusmediatedstannousnanoparticlesonstreptococcusmutans
AT rajagopalshruthi antibacterialeffectivenessofcitrulluslanatusmediatedstannousnanoparticlesonstreptococcusmutans
AT sugumaransurendar antibacterialeffectivenessofcitrulluslanatusmediatedstannousnanoparticlesonstreptococcusmutans