Cargando…

Optimisation of a standalone photovoltaic electric vehicle charging station using the loss of power supply probability

The UK is planning to ban the sale of fuel vehicles entirely by 2035 and electric vehicles will be a potential alternative to fuel vehicles. The increase in electric vehicles will increase the charging demand. Standalone charging stations are a potential solution to alleviate the grid challenges of...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Zhendong, Ghosh, Aritra, Lopez, Neil Stephen A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585305/
https://www.ncbi.nlm.nih.gov/pubmed/37867817
http://dx.doi.org/10.1016/j.heliyon.2023.e20836
Descripción
Sumario:The UK is planning to ban the sale of fuel vehicles entirely by 2035 and electric vehicles will be a potential alternative to fuel vehicles. The increase in electric vehicles will increase the charging demand. Standalone charging stations are a potential solution to alleviate the grid challenges of increased charging demand. In this work, the authors investigate a reliability analysis of a 2 MW standalone photovoltaic electric vehicle charging station (PVEVCS) using the loss of power supply probability(LPSP). The PVEVCS model consists of a PV system, a battery energy storage system (BESS) and a CS, using the climate data from Camborne, UK and classifying it into high and low irradiation sections. Next, four different charging demand profiles are selected to examine the models’ LPSP. Later, the chosen charging demand profiles are optimised using various combinations of PV systems, BESS and CS. It is concluded that the different solar irradiation had a significant effect on the LPSP. Under the same combination, higher PV capacity has a more positive impact on reducing daytime LPSP, higher BESS capacity has a more significant effect on lowering nighttime LPSP and larger CS capacity has a more significant impact on declining hourly LPSP.