Cargando…

Uncontrolled eating and sensation-seeking partially explain the prediction of future binge drinking from adolescent brain structure

Binge drinking behavior in early adulthood can be predicted from brain structure during early adolescence with an accuracy of above 70%. We investigated whether this accurate prospective prediction of alcohol misuse behavior can be explained by psychometric variables such as personality traits or me...

Descripción completa

Detalles Bibliográficos
Autores principales: Prakash Rane, Roshan, Philomena Maria Musial, Milena, Beck, Anne, Rapp, Michael, Schlagenhauf, Florian, Banaschewski, Tobias, Bokde, Arun L.W., Paillère Martinot, Marie-Laure, Artiges, Eric, Nees, Frauke, Lemaitre, Herve, Hohmann, Sarah, Schumann, Gunter, Walter, Henrik, Heinz, Andreas, Ritter, Kerstin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585345/
https://www.ncbi.nlm.nih.gov/pubmed/37837892
http://dx.doi.org/10.1016/j.nicl.2023.103520
Descripción
Sumario:Binge drinking behavior in early adulthood can be predicted from brain structure during early adolescence with an accuracy of above 70%. We investigated whether this accurate prospective prediction of alcohol misuse behavior can be explained by psychometric variables such as personality traits or mental health comorbidities in a data-driven approach. We analyzed a subset of adolescents who did not have any prior binge drinking experience at age 14 (IMAGEN dataset, n = 555, 52.61% female). Participants underwent structural magnetic resonance imaging at age 14, binge drinking assessments at ages 14 and 22, and psychometric questionnaire assessments at ages 14 and 22. We derived structural brain features from T1-weighted magnetic resonance and diffusion tensor imaging. Using Machine Learning (ML), we predicted binge drinking (age 22) from brain structure (age 14) and used counterbalancing with oversampling to systematically control for 110 + variables from a wide range of social, personality, and other psychometric characteristics potentially associated with binge drinking. We evaluated if controlling for any variable resulted in a significant reduction in ML prediction accuracy. Sensation-seeking (-13.98 ± 1.68%), assessed via the Substance Use Risk Profile Scale at age 14, and uncontrolled eating (-13.98 ± 3.28%), assessed via the Three-Factor-Eating-Questionnaire at age 22, led to significant reductions in mean balanced prediction accuracy upon controlling for them. Thus, sensation-seeking and binge eating could partially explain the prediction of future binge drinking from adolescent brain structure. Our findings suggest that binge drinking and binge eating at age 22 share common neurobiological precursors discovered by the ML model. These neurobiological precursors seem to be associated with sensation-seeking at age 14. Our results facilitate early detection of increased risk for binge drinking and inform future clinical research in trans-diagnostic prevention approaches for adolescent alcohol misuse.