Cargando…

Changes in physical architecture and lipids compounds in skeletal muscle from Pekin duck and Liancheng white duck

As a complex food, meat displays various biochemical properties that are determined to a great extent by physical architecture and lipid metabolites. Pekin duck and Liancheng white duck are elite breeds with distinct characteristics. Here, we explored the development of the muscle fibers from embryo...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Hehe, Zhang, He, Liu, Dapeng, Li, Shunan, Wang, Zhen, Yu, Daxun, Guo, Zhan bao, Hou, Shuisheng, Zhou, Zhengkui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585346/
https://www.ncbi.nlm.nih.gov/pubmed/37837677
http://dx.doi.org/10.1016/j.psj.2023.103106
Descripción
Sumario:As a complex food, meat displays various biochemical properties that are determined to a great extent by physical architecture and lipid metabolites. Pekin duck and Liancheng white duck are elite breeds with distinct characteristics. Here, we explored the development of the muscle fibers from embryonic stage to 10-wk after birth, and muscle fibers grow slowly after 8-wk. We investigated the meat quality, ultrastructure, lipidomics profiling, and lipids spatial distribution of skeletal muscle at 8 wk. Pekin duck has lower Warner-Bratzler shear force (WBSF) (P < 0.05), high intramuscular fat (IMF) (P < 0.01), longer and wider sarcomere, and higher mitochondrial density (P < 0.001). Liancheng white duck with tighter collagen architecture. A total of 950 lipids from 6 lipid classes identified with lipidomics were analyzed, the levels of GP, GL, and PR were significantly higher in Pekin duck (P < 0.05), SL and ST were significantly higher in Liancheng white duck (P < 0.05). There were 333 significantly different lipids (|log2(Fold Change)| ≥ 1 and FDR < 0.05) screened, most lipids distributed in the muscle tissue were uniform, but some specifically distributed in connective tissue. To some extent, the results demonstrate the high lipid deposition capacity of Pekin duck and the high medicinal function of Liancheng white duck. Our study provides new insights into the relationship between skeletal muscle architecture and meat toughness, which increased the knowledge of lipidomic characteristics and provide a basis for duck meat authentication.