Cargando…
DeepPeptide predicts cleaved peptides in proteins using conditional random fields
MOTIVATION: Peptides are ubiquitous throughout life and involved in a wide range of biological processes, ranging from neural signaling in higher organisms to antimicrobial peptides in bacteria. Many peptides are generated post-translationally by cleavage of precursor proteins and can thus not be de...
Autores principales: | Teufel, Felix, Refsgaard, Jan Christian, Madsen, Christian Toft, Stahlhut, Carsten, Grønborg, Mads, Winther, Ole, Madsen, Dennis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585352/ https://www.ncbi.nlm.nih.gov/pubmed/37812217 http://dx.doi.org/10.1093/bioinformatics/btad616 |
Ejemplares similares
-
Combining mass spectrometry and machine learning to discover bioactive peptides
por: Madsen, Christian T., et al.
Publicado: (2022) -
Self-cleaving peptides for expression of multiple genes in Dictyostelium discoideum
por: Zhu, Xinwen, et al.
Publicado: (2023) -
Detecting sequence signals in targeting peptides using deep learning
por: Almagro Armenteros, Jose Juan, et al.
Publicado: (2019) -
Analysis artefacts of the INS-IGF2 fusion transcript
por: Wernersson, Rasmus, et al.
Publicado: (2015) -
SignalP 6.0 predicts all five types of signal peptides using protein language models
por: Teufel, Felix, et al.
Publicado: (2022)