Cargando…
Magnetic resonance radiographic features which might lead to misdiagnosis of muscle-invasive bladder cancer based on vesical imaging reporting and data system: the application experience of a single center
BACKGROUND: The Vesical Imaging Reporting and Data System (VI-RADS) has been widely used for diagnosing muscle-invasive bladder cancer (MIBC), yet instances of misdiagnosis persist. However, limited research discusses the factors affecting its accuracy. This study aimed to evaluate the diagnostic ef...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585496/ https://www.ncbi.nlm.nih.gov/pubmed/37869292 http://dx.doi.org/10.21037/qims-23-356 |
Sumario: | BACKGROUND: The Vesical Imaging Reporting and Data System (VI-RADS) has been widely used for diagnosing muscle-invasive bladder cancer (MIBC), yet instances of misdiagnosis persist. However, limited research discusses the factors affecting its accuracy. This study aimed to evaluate the diagnostic efficacy of the VI-RADS in our center and to preliminarily identify possible magnetic resonance imaging (MRI) characteristics of misdiagnosis. METHODS: From January 2018 to February 2023, a consecutive series of 211 participants pathologically diagnosed with bladder cancer (BC) who underwent an MRI exam were retrospectively enrolled. MRI was interpreted by 2 radiologists with different levels of experience, the diagnostic performance was validated using the receiver operating characteristic (ROC) curve, and VI-RADS ≥4 was considered to indicate MIBC-positive status. The clinical and radiographic characteristics of the true-positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN) groups were analyzed using Kruskal-Wallis test or Fisher exact test. RESULTS: With VI-RADS ≥4 as the cutoff value, the area under the ROC curves (AUCs) were 0.951 (0.912–0.976) and 0.847 (0.791–0.893) for the more-experienced reader and less-experienced reader, respectively, with good interobserver agreement (κ=0.74105). The median tumor size in the TP (more experienced: 57 cases; less experienced: 44 cases) and FP (more experienced: 8 cases; less experienced: 9 cases) groups was larger than that in the TN (more experienced: 141 cases; less experienced: 139 cases) group for the more-experienced reader (TP: 28 mm; FP: 31 mm; TN: 19 mm; P<0.001 and P=0.031, respectively) and the less-experienced reader (TP: 31 mm; FP: 28 mm; TN: 19 mm; P<0.001 and P=0.042, respectively). The tumor base in the TP and FP groups was larger than that in the TN group for the more-experienced reader (TP: 37 mm; FP: 48 mm; TN: 15 mm; both P<0.001) and for the less-experienced reader (FP: 42 mm; FP: 36 mm; TN: 15 mm; P<0.001 and P=0.022, respectively). The median tumor base in the TP group was larger than that in the FN group for the less-experienced reader (TP: 42 mm; FN: 17 mm; P=0.004). CONCLUSIONS: We observed good to excellent AUCs with good interobserver agreement among radiologists with different levels of expertise using VI-RADS. Large tumor size and wide tumor base affected the accuracy of VI-RADS in MIBC diagnosis. |
---|