Cargando…
Validation of a deep learning-based software for automated analysis of T2 mapping in cardiac magnetic resonance imaging
BACKGROUND: The reliability and diagnostic performance of deep learning (DL)-based automated T2 measurements on T2 map of 3.0-T cardiac magnetic resonance imaging (MRI) using multi-institutional datasets have not been investigated. We aimed to evaluate the performance of a DL-based software for meas...
Autores principales: | Kim, Hwan, Yang, Young Joong, Han, Kyunghwa, Kim, Pan Ki, Choi, Byoung Wook, Kim, Jin Young, Suh, Young Joo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585511/ https://www.ncbi.nlm.nih.gov/pubmed/37869306 http://dx.doi.org/10.21037/qims-23-375 |
Ejemplares similares
-
Automated Measurement of Native T1 and Extracellular Volume Fraction in Cardiac Magnetic Resonance Imaging Using a Commercially Available Deep Learning Algorithm
por: Chang, Suyon, et al.
Publicado: (2022) -
Early Detection and Serial Monitoring of Anthracycline-Induced Cardiotoxicity Using T1-mapping Cardiac Magnetic Resonance Imaging: An Animal Study
por: Hong, Yoo Jin, et al.
Publicado: (2017) -
Author Correction: Early Detection and Serial Monitoring of Anthracycline-Induced Cardiotoxicity Using T1-mapping Cardiac Magnetic Resonance Imaging: An Animal Study
por: Hong, Yoo Jin, et al.
Publicado: (2022) -
Cardiac CT for Measurement of Right Ventricular Volume and Function in Comparison with Cardiac MRI: A Meta-Analysis
por: Kim, Jin Young, et al.
Publicado: (2020) -
Chemotherapy-Related Cardiac Dysfunction: Quantitative Cardiac Magnetic Resonance Image Parameters and Their Prognostic Implications
por: Kim, Jinhee, et al.
Publicado: (2023)