Cargando…
Deep learning-based cardiothoracic ratio measurement on chest radiograph: accuracy improvement without self-annotation
BACKGROUND: A reproducible and accurate automated approach to measuring cardiothoracic ratio on chest radiographs is warranted. This study aimed to develop a deep learning-based model for estimating the cardiothoracic ratio on chest radiographs without requiring self-annotation and to compare its re...
Autores principales: | Yoshida, Kotaro, Takamatsu, Atsushi, Matsubara, Takashi, Kitagawa, Taichi, Toshima, Fomihito, Tanaka, Rie, Gabata, Toshifumi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585545/ https://www.ncbi.nlm.nih.gov/pubmed/37869343 http://dx.doi.org/10.21037/qims-23-187 |
Ejemplares similares
-
The Performance of a Deep Learning-Based Automatic Measurement Model for Measuring the Cardiothoracic Ratio on Chest Radiographs
por: Kim, Donguk, et al.
Publicado: (2023) -
Fat fraction and R2 * values of various liver masses: Initial experience with 6-point Dixon method on a 3T MRI system
por: Kitagawa, Taichi, et al.
Publicado: (2023) -
Limitations of cardiothoracic ratio derived from chest radiographs to predict real heart size: comparison with magnetic resonance imaging
por: Simkus, Paulius, et al.
Publicado: (2021) -
Calculation of the Cardiothoracic Ratio from Portable Anteroposterior Chest Radiography
por: Chon, Sung Bin, et al.
Publicado: (2011) -
Renal artery-based kidney segmentation on CT for patients with renal cell carcinoma: Feasibility of segmental artery clamping simulation
por: Yoshida, Kotaro, et al.
Publicado: (2022)