Cargando…
Automatic epicardial adipose tissue segmentation in pulmonary computed tomography venography using nnU-Net
BACKGROUND: Epicardial adipose tissue (EAT) is a key aspect in the investigation of cardiac pathophysiology. We sought to develop a deep learning (DL) model for fully automatic extraction and quantification of EAT through pulmonary computed tomography venography (PCTV) images. METHODS: In this retro...
Autores principales: | Hu, Yifan, Jiang, Shanshan, Yu, Xiaojin, Huang, Sicong, Lan, Ziting, Yu, Yarong, Zhang, Xiaohui, Chen, Jin, Zhang, Jiayin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585557/ https://www.ncbi.nlm.nih.gov/pubmed/37869313 http://dx.doi.org/10.21037/qims-23-233 |
Ejemplares similares
-
An Algorithm for Automatic Rib Fracture Recognition Combined with nnU-Net and DenseNet
por: Zhang, Junzhong, et al.
Publicado: (2022) -
Lifelong nnU-Net: a framework for standardized medical continual learning
por: González, Camila, et al.
Publicado: (2023) -
Application of nnU-Net for Automatic Segmentation of Lung Lesions on CT Images and Its Implication for Radiomic Models
por: Ferrante, Matteo, et al.
Publicado: (2022) -
An open-source nnU-net algorithm for automatic segmentation of MRI scans in the male pelvis for adaptive radiotherapy
por: Lorenzen, Ebbe Laugaard, et al.
Publicado: (2023) -
The application of the nnU-Net-based automatic segmentation model in assisting carotid artery stenosis and carotid atherosclerotic plaque evaluation
por: Zhu, Ying, et al.
Publicado: (2022)