Cargando…
Structure-preserving low-dose computed tomography image denoising using a deep residual adaptive global context attention network
BACKGROUND: Low-dose computed tomography (LDCT) scans can effectively reduce the radiation damage to patients, but this is highly detrimental to CT image quality. Deep convolutional neural networks (CNNs) have shown their potential in improving LDCT image quality. However, the conventional CNN-based...
Autores principales: | Zhang, Yuanke, Hao, Dejing, Lin, Yingying, Sun, Wanxin, Zhang, Jinke, Meng, Jing, Ma, Fei, Guo, Yanfei, Lu, Hongbing, Li, Guangshun, Liu, Jianlei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585579/ https://www.ncbi.nlm.nih.gov/pubmed/37869272 http://dx.doi.org/10.21037/qims-23-194 |
Ejemplares similares
-
Dual Residual Denoising Autoencoder with Channel Attention Mechanism for Modulation of Signals
por: Duan, Ruifeng, et al.
Publicado: (2023) -
RatUNet: residual U-Net based on attention mechanism for image denoising
por: Zhang, Huibin, et al.
Publicado: (2022) -
RDASNet: Image Denoising via a Residual Dense Attention Similarity Network
por: Tao, Haowu, et al.
Publicado: (2023) -
Adaptive differentiable grids for cryo-electron tomography reconstruction and denoising
por: Wang, Yuanhao, et al.
Publicado: (2023) -
Edge-Preserving Denoising of Image Sequences
por: Yi, Fan, et al.
Publicado: (2021)