Cargando…

A quantitative analysis framework of placenta accreta spectrum: placenta subtype, intraoperative bleeding, and hysterectomy risk evaluation based on magnetic resonance imaging-anatomical-clinical features

BACKGROUND: Placenta accreta spectrum (PAS) is a significant contributor to maternal morbidity and mortality. Our objective was to develop a quantitative analysis framework utilizing magnetic resonance imaging (MRI)-anatomical-clinical features to predict 3 clinically significant parameters in patie...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Huancheng, Wu, Xiang, Liu, Weihao, Yuan, Yangguang, Zeng, Haoyang, Li, Junkai, Ye, Baiwei, Wang, Lei, Luo, Shimei, Li, Zhe, Liu, Hanlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585581/
https://www.ncbi.nlm.nih.gov/pubmed/37869322
http://dx.doi.org/10.21037/qims-23-142
Descripción
Sumario:BACKGROUND: Placenta accreta spectrum (PAS) is a significant contributor to maternal morbidity and mortality. Our objective was to develop a quantitative analysis framework utilizing magnetic resonance imaging (MRI)-anatomical-clinical features to predict 3 clinically significant parameters in patients with PAS: placenta subtype (invasive vs. non-invasive placenta), intraoperative bleeding (≥1,500 vs. <1,500 mL), and hysterectomy risk (hysterectomy vs. non-hysterectomy). METHODS: A total of 125 pregnant women with PAS from 2 medical centers were enrolled into an internal training set and an external testing set. Some 21 MRI-anatomical-clinical features were integrated as input into the framework. The proposed quantitative analytic framework contains mainly 3 classifiers built by extreme gradient boosting (XGBoost) and their testing in external datasets. We also further compared the accuracy of placenta subtype prediction between the proposed model and 4 radiologists. A quantitative model interpretation method called SHapley Additive exPlanations (SHAP) was conducted to explore the contribution of each feature. RESULTS: The placenta subtype (invasive vs. non-invasive), intraoperative bleeding (≥1,500 vs. <1,500 mL), and hysterectomy risk (hysterectomy vs. non-hysterectomy) demonstrated impressive area under the receiver operating characteristic curve (AUROC) values of 0.93, 0.88, and 0.90, respectively, in the internal validation set. Even in the external testing set, these metrics maintained their strength, achieving AUROC values of 0.91, 0.82, and 0.82, respectively. Comparing our proposed framework to the 4 radiologists, our model exhibited superior accuracy, specificity, and sensitivity in predicting placental subtypes within the external testing cohort. The features associated with intraplacental dark T2 bands played a crucial role in the decision-making process of all 3 prediction models. CONCLUSIONS: The quantitative analysis framework can provide a robust method for classification of placenta subtype (invasive vs. non-invasive placenta), intraoperative bleeding (≥1,500 vs. <1,500 mL), and hysterectomy risk (hysterectomy vs. non-hysterectomy) based on MRI-anatomical-clinical features in PAS.