Cargando…

A constitutive serine protease inhibitor suppresses herbivore performance in tea (Camellia sinensis)

Protease inhibitors promote herbivore resistance in diverse plant species. Although many inducible protease inhibitors have been identified, there are limited reports available on the biological relevance and molecular basis of constitutive protease inhibitors in herbivore resistance. Here, we ident...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Meng, Liu, Chuande, Li, Nana, Yuan, Chenhong, Liu, Miaomiao, Xin, Zhaojun, Lei, Shu, Sun, Xiaoling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585712/
https://www.ncbi.nlm.nih.gov/pubmed/37868619
http://dx.doi.org/10.1093/hr/uhad178
Descripción
Sumario:Protease inhibitors promote herbivore resistance in diverse plant species. Although many inducible protease inhibitors have been identified, there are limited reports available on the biological relevance and molecular basis of constitutive protease inhibitors in herbivore resistance. Here, we identified a serine protease inhibitor, CsSERPIN1, from the tea plant (Camellia sinensis). Expression of CsSERPIN1 was not strongly affected by the assessed biotic and abiotic stresses. In vitro and in vivo experiments showed that CsSERPIN1 strongly inhibited the activities of digestive protease activities of trypsin and chymotrypsin. Transient or heterologous expression of CsSERPIN1 significantly reduced herbivory by two destructive herbivores, the tea geometrid and fall armyworm, in tea and Arabidopsis plants, respectively. The expression of CsSERPIN1 in Arabidopsis did not negatively influence the growth of the plants under the measured parameters. Our findings suggest that CsSERPIN1 can inactivate gut digestive proteases and suppress the growth and development of herbivores, making it a promising candidate for pest prevention in agriculture.