Cargando…

Novel immune-related gene signature for risk stratification and prognosis prediction in ovarian cancer

BACKGROUND: The immune system played a multifaceted role in ovarian cancer (OC) and was a significant mediator of ovarian carcinogenesis. Various immune cells and immune gene products played an integrated role in ovarian cancer (OC) progression, proved the significance of the immune microenvironment...

Descripción completa

Detalles Bibliográficos
Autores principales: Fei, Hongjun, Han, Xu, Wang, Yanlin, Li, Shuyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585734/
https://www.ncbi.nlm.nih.gov/pubmed/37858138
http://dx.doi.org/10.1186/s13048-023-01289-w
Descripción
Sumario:BACKGROUND: The immune system played a multifaceted role in ovarian cancer (OC) and was a significant mediator of ovarian carcinogenesis. Various immune cells and immune gene products played an integrated role in ovarian cancer (OC) progression, proved the significance of the immune microenvironment in prognosis. Therefore, we aimed to establish and validate an immune gene prognostic signature for OC patients’ prognosis prediction. METHODS: Differently expressed Immune-related genes (DEIRGs) were identified in 428 OC and 77 normal ovary tissue specimens from 9 independent GEO datasets. The Cancer Genome Atlas (TCGA) cohort was used as a training cohort, Univariate Cox analysis was used to identify prognostic DEIRGs in TCGA cohort. Then, an immune gene-based risk model for prognosis prediction was constructed using the LASSO regression analysis, and validated the accuracy and stability of the model in 374 and 93 OC patients in TCGA training cohort and International Cancer Genome Consortium (ICGC) validation cohort respectively. Finally, the correlation among risk score model, clinicopathological parameters, and immune cell infiltration were analyzed. RESULTS: Five DEIRGs were identified to establish the immune gene signature and divided OC patients into the low- and high-risk groups. In TCGA and ICGC datasets, patients in the low-risk group showed a substantially higher survival rate than high-risk group. Receiver operating characteristic (ROC) curves, t-distributed stochastic neighbor embedding (t-SNE) analysis and principal component analysis (PCA) showed the good performance of the risk model. Clinicopathological correlation analysis proved the risk score model could serve as an independent prognostic factor in 2 independent datasets. CONCLUSIONS: The prognostic model based on immune-related genes can function as a superior prognostic indicator for OC patients, which could provide evidence for individualized treatment and clinical decision making. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13048-023-01289-w.