Cargando…
GeneSegNet: a deep learning framework for cell segmentation by integrating gene expression and imaging
When analyzing data from in situ RNA detection technologies, cell segmentation is an essential step in identifying cell boundaries, assigning RNA reads to cells, and studying the gene expression and morphological features of cells. We developed a deep-learning-based method, GeneSegNet, that integrat...
Autores principales: | Wang, Yuxing, Wang, Wenguan, Liu, Dongfang, Hou, Wenpin, Zhou, Tianfei, Ji, Zhicheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585768/ https://www.ncbi.nlm.nih.gov/pubmed/37858204 http://dx.doi.org/10.1186/s13059-023-03054-0 |
Ejemplares similares
-
Retinal Vessel Automatic Segmentation Using SegNet
por: Xu, Xiaomei, et al.
Publicado: (2022) -
SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022) -
MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology
por: Fischer, Christian A., et al.
Publicado: (2020) -
Retracted: Retinal Vessel Automatic Segmentation Using SegNet
por: Methods in Medicine, Computational and Mathematical
Publicado: (2023) -
COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet
por: Saood, Adnan, et al.
Publicado: (2021)