Cargando…
Application and interpretation of machine learning models in predicting the risk of severe obstructive sleep apnea in adults
BACKGROUND: Obstructive sleep apnea (OSA) is a globally prevalent disease with a complex diagnostic method. Severe OSA is associated with multi-system dysfunction. We aimed to develop an interpretable machine learning (ML) model for predicting the risk of severe OSA and analyzing the risk factors ba...
Autores principales: | Shi, Yewen, Zhang, Yitong, Cao, Zine, Ma, Lina, Yuan, Yuqi, Niu, Xiaoxin, Su, Yonglong, Xie, Yushan, Chen, Xi, Xing, Liang, Hei, Xinhong, Liu, Haiqin, Wu, Shinan, Li, Wenle, Ren, Xiaoyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585776/ https://www.ncbi.nlm.nih.gov/pubmed/37858225 http://dx.doi.org/10.1186/s12911-023-02331-z |
Ejemplares similares
-
Prediction model of obstructive sleep apnea–related hypertension: Machine learning–based development and interpretation study
por: Shi, Yewen, et al.
Publicado: (2022) -
The relationship of tongue fat content and efficacy of uvulopalatopharyngoplasty in Chinese patients with obstructive sleep apnea
por: Zhao, Bingjie, et al.
Publicado: (2023) -
Serum neurofilament light reflects cognitive dysfunctions in children with obstructive sleep apnea
por: Shi, Yewen, et al.
Publicado: (2022) -
Relationship between serum brain-derived neurotrophic factor and cognitive impairment in children with sleep-disordered breathing
por: Feng, Yani, et al.
Publicado: (2023) -
Editorial: Basic and clinical research on adult snoring and obstructive sleep apnea syndrome
por: Shi, Yewen, et al.
Publicado: (2023)